27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-1 远端控制 云端分析系统 设备端 自动化解决用户使用体验问题,计算量属于窄带范畴, 所以计算算力重点在于云端,云端计算体系架构成熟, 成本较低,在业务上本地的设备根据模式信号反馈一些 动作,比如下雨关窗帘,是自动化范畴,上传云端的数 据都是属性数据,比如谁什么时候干了什么,后续云端 根据个人喜好数据为用户提供比如按照个人喜好调节温 云端分析系统 设备端 (现场)边缘计算BOX 业务场景复杂,对算力、通信要求很高,计算放置于 云端时效性差,另外无法现场就对业务进行处理,比 如计算路口交通事故预警,给予司机及时提示等,所 以将算力卸载在距离业务现场、设备最近的地方,就 是边缘计算的场景,它的价值空间远超AIoT,可以更 大范围为客户赋能,IoT和边缘计算一定走向融合。 定位为基于物模型的计算 定位为基于业务的计算 高级 高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-2 • 为了更好的为客户业 务场景赋能,比如路 口的交通事故识别和 预警等等需要低时延 高算力的场景,需要 实现云边一体纳管, 简化运维,降低成本, 客户专注于业务领域。 • 无论是AIoT还是边缘 计算,核心要素是计 算,计算平台的训练 平台位于云端,而推 理计算位于BOX端,并 且能够适应各类算法 和硬件的要求,形成 一个通用计算平台, 更普遍的为客户场景0 码力 | 20 页 | 5.17 MB | 6 月前3
云原生中的数据科学KubeConAsia2018Final0 码力 | 47 页 | 14.91 MB | 1 年前3
构建统一的云原生应用 可观测性数据平台rights reserved. 构建统一的云原生应用 可观测性数据平台 DeepFlow在混合云中的实践总结 向阳@云杉网络 2022-04-09 1. 可观测性数据平台的挑战 2. 解决数据孤岛:AutoTagging 3. 降低资源开销:MultistageCodec 4. 统一数据平台的落地思路及案例 构建统一的云原生应用可观测性数据平台 看云网更清晰 Simplify the growing 统一的可观测性数据平台 telegraf 看云网更清晰 Simplify the growing complexity. 挑战:数据孤岛、资源开销 数据 孤岛 资源消耗 telegraf 1. 可观测性数据平台的挑战 2. 解决数据孤岛:AutoTagging 3. 降低资源开销:MultistageCodec 4. 统一数据平台的落地思路及案例 构建统一的云原生应用可观测性数据平台 看云网更清晰 Simplify the growing complexity. OpenTelemetry的方法 统一的上下文 以追踪为核心 看云网更清晰 Simplify the growing complexity. OpenTelemetry的方法 Tag, Exemplars (TraceID, SpanID) Tag, TraceID, SpanID TraceID &0 码力 | 35 页 | 6.75 MB | 1 年前3
使用Chaos Mesh来保障云原生系统的健壮性-周强云原生社区Meetup 第三期·杭州站 使用 Chaos Mesh 来保障云原生系统的健壮性 演讲人:周强 GitHub 地址:https://github.com/zhouqiang-cl PingCAP 工程效率负责人,ChaosMesh 负责人 云原生社区Meetup 第三期·杭州站 The incident in the production environment and growing 90+ Cloud Native Computing Foundation Sandbox 欢迎加入云原生社区稳定性 SIG https://i.cloudnative.to/stability/ 云原生社区Meetup 第三期·杭州站 THANKS0 码力 | 28 页 | 986.42 KB | 6 月前3
云原生微服务最佳实践云原生微服务最佳实践 彦林 阿里云智能高级技术专家 & Nacos 创始人 2022/01/07 云原生微服务最佳实践 微服务简介 最佳实践 用户故事 微服务简介 • 云原生和微服务简介 • 微服务的价值和挑战 • 阿里微服务产品解法和优势 云原生和微服务简介 微服务的价值和挑战 图片源自:http://www.zyiz.net/ 价值 效率(人越来越贵,算力越来越便宜) 研发超过 10 人在 1 个代码冲突多 • 系统超过 5 个测试&上线协同代价大 • 数字化升级需要快速迭代 性能 • 单机成为性能瓶颈 可用性 • 单机成为可用性瓶颈 挑战 • 技术复杂度上升 • 运维成本上升 • 可定位性变差 • 快速迭代难以控制风险 阿里微服务解法和优势 MSE微服务引擎 Nacos Ingress(Envoy) 云原⽣⽹关 Sentinel 用户容器 AHAS 解决技术风险 • 通过 PTS 解决容量风险 优势 • 开源、自研、商业化三位 一体 • 开源 DNS 国内事实标准, 生态完善 • 十多年双十一洪峰考验, 默认高可用 • 阿里云成千上万用户的选 择,简单易用 • 专业的微服务团队保障 Dubbo/Spring-Cloud-Alibaba/Envoy 服务框架+服务⽹格 用户容器 用户容器 最佳实践 • 微服务最佳实践0 码力 | 20 页 | 6.76 MB | 1 年前3
云原生图数据库解谜、容器化实践与 Serverless 应用实操云原⽣图数据库解谜、容器化实 践与 Serverless 应⽤实操 古思为 ⽅阗 Graph DB on K8s Demystified and its Serverless applicaiton in actions. DEVELOPER ADVOCATE @ MAINTAINER OF KCD China 2021 Nov. 6th @Shanghai 古思为 wey-gu fun OpenFunction 社区 Maintainer ⻘云科技研发⼯程师 Overview 了解 K8s 上的 Serverless 计算平台搭建实践:OpenFunction K8s 上的图数据库基于 KubeBuilder 的 Operator 实现,解谜图数据库的知识与应⽤ 上⼿ K8s 上的云原⽣图数据库、从零到⼀构建 Serverless 架构的智能问答助⼿ siwei Serverless ? Serverless / FaaS 领域开源现状如何? Serverless 的新愿景? 什么是 Serverless ? Serverless / FaaS 领域开源项⽬现状 近年来云原⽣ Serverless 相关领域陆续涌现出了很多优秀的开源项⽬: KEDA、Dapr、Cloud Native Buildpacks(CNB)、Tekton、Shipwright 现有开源 FaaS0 码力 | 47 页 | 29.72 MB | 1 年前3
多云下的云原生之道multicloud0 码力 | 7 页 | 1.86 MB | 1 年前3
22-云原生的缘起、云原生底座、PaaS 以及 Service Mesh 等之道-高磊云原生学院 第 22 期 云原生产品与架构系列:第1讲 曾任阿里巴巴、华为架构师、深信服云原生产品规划主管 10月27日(周三)晚8点-9 点 高磊 主 办 方 : 互 动 平 台 : MIS、ERP… 2、流程规范 BPM、EAI… 3、管理监控 BAM、BI 4、协作平台 OA、CRM 5、数据化运营 SEM、O2O 6、互联网平台 AI、IoT 数据化运营 大数据 智能化管控 互联网平台 跨企业合作 稳态IT:安全、稳定、性能 敏态IT:敏捷、弹性、灵活 各行业IT应用系统不断丰富与创新 总部 机关 内部员工 分支 机构 内部员工 移动 接入 内部员工/合作伙伴 OA 物联终端 互联网、 大数据 AI、 IoT 数字化转型 应用价值提升 应用数量增长 应用类型丰富 应用需求多变 企业从信息化到数字化的转型带来大量的应用需求 软件组件 运行环境 部署平台 …… …… 应用丰富及架构演进带来的开发和运维复杂性 本地IDC 虚拟化 超融合 公有云 …… 测试环境0 码力 | 42 页 | 11.17 MB | 6 月前3
Volcano加速金融行业大数据分析平台云原生化改造的应用实践Volcano加速金融行业大数据分析平台 云原生化改造的应用实践 汪 洋, 华为云 Volcano 社区核心贡献者 大数据平台云原生面临的挑战 传统大数据平台云原生化改造成为必然趋势 大数据分析、人工智能等批量计算场景深度应用于金融场景 作业管理缺失 • Pod级别调度,无法感知上层应用 • 缺少作业概念、缺少完善的生命周期的管理 • 缺少任务依赖、作业依赖支持 调度策略局限 不同框架对作业管理、并行计算等要求不通 • 计算密集,资源波动大,需要高级调度能力 资源规划复用、异构计算支持不足 • 缺少队列概念 • 不支持集群资源的动态规划以及资源复用 • 对异构资源支持不足 传统服务 大数据 人工智能 云原生大数据平台 大数据、AI等批量计算场景 云原生化面临的挑战 Volcano 架构 项目概况: • 业界首个云原生批量计算平台 • 2019年6 2019年6月开源,2020年进入CNCF,目前是CNCF孵化级项目 • 2.9k star,500+ 全球贡献者 • 50+ 企业生产落地 关键特性: 1. 统一的作业管理 提供完善作业生命周期管理,统一支持几乎所有主流的计算框架,如 Pytorch, MPI, Horovod, Tensorflow、Spark等。 2. 丰富的高阶调度策略 公平调度、任务拓扑调度、基于SLA调度、作业抢占、回填、弹性调度、 混部等。0 码力 | 18 页 | 1.82 MB | 1 年前3
12-从数据库中间件到云原生——Apache ShardingSphere 架构演进-秦金卫从【数据库中间件】到【云原生】 ——Apache ShardingSphere 架构演进 Apache Dubbo/ShardingSphere PMC 秦金卫(kimmking) 2020-12-04 20:00 云 原 生 学 院 # 1 2 目录 1.数据库框架:从数据库的性能与容量到数据库框架技术的产生 2.数据库中间件:从框架技术到分布式的数据库中间件技术 3.分布式数据库:从数据库中间件技术发展到分布式数据库 分布式数据库:从数据库中间件技术发展到分布式数据库 4.数据库网格:数据库与微服务、云原生的发展关系 5.数据库解决方案:如何基于 ShardingSphere 生态创建数据库解决方案 1.数据库框架 1.数据库框架 摩尔定律失效 分布式崛起 1.数据库框架 随着数据量的增大,读写并发的增加,系统可用性要求的提升,单机 MySQL面临: 1、容量有限,难以扩容 2、读写压力,QPS过大,特别是分析类需求会影响到业务事务 3、可用性不足,宕机问题 1.数据库框架 1.数据库框架 计算机领域的任何问题都可以通过增加一个中间层来解决。 数据库框架技术:在业务侧增强数据 库的能力。 直接在业务代码使用。 支持常见的数据库和JDBC。 轻量级,不需要额外的资源和机器。 1.数据库框架 1、改造对业务系统具有较大侵入性; 2、对于复杂的SQL,可能不支持; 3、对于跨库和跨分片的数据,需要额外机制保障一致性;0 码力 | 23 页 | 1.91 MB | 6 月前3
共 34 条
- 1
- 2
- 3
- 4













