积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(25)机器学习(25)

语言

全部中文(简体)(13)英语(12)

格式

全部PDF文档 PDF(25)
 
本次搜索耗时 0.080 秒,为您找到相关结果约 25 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    multi-threaded data loaders, the default shared memory segment size with which the container runs might not be enough. Therefore, you should increase the shared memory size by issuing one of the following commands: commands: ‣ --ipc=host ‣ --shm-size=memory size> in the command line to docker run --gpus all To pull data and model descriptions from locations outside the container for use by PyTorch or (FP8) precision on Hopper GPUs which provides better training and inference performance with lower memory utilization. Transformer Engine also includes a collection of highly optimized modules for popular
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    bear, if we ever accidentally cross paths. We build an associative memory when about them over our lifetime. This associative memory helps us visualize the similarities or differences between a pair of model architecture of the downstream task. In essence, the embedding tables provide us a portable memory bank of knowledge about our domain of interest. This knowledge can be freely used by downstream tasks significant portion of the model size on disk and in memory. Although this comes with the cost of the table taking up significant disk space and memory, this issue can be a bottleneck if the model is going
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    quality is an important benchmark to evaluate the performance of a deep learning model. A language translation application that uses a low quality model would struggle with consumer adoption because it wouldn’t speak different languages. An application that employs a high quality model with a reasonable translation accuracy would garner better consumer support. In this chapter, our focus will be on the techniques techniques use models to generate samples for labels. Consider a training sample for English to Spanish translation: [English: “I am doing really well”, Spanish: “Estoy muy bien”]. Let’s say we have another model
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    Training Efficiency involves benchmarking the model training process in terms of computation cost, memory cost, amount of training data, and the training latency. It addresses questions like: ● How long the model take to train? ● How many devices are needed for the training? ● Can the model fit in memory? ● How much data would the model need to achieve the desired performance on the given task that experience in low or no-connectivity areas. This is made possible with an efficient on-device translation model. Explosion of Models Often there might be multiple ML models being served concurrently
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    1)是输入特征的一个 仿射变换(affine transformation)。仿射变换的特点是通过 加权和对特征进行线性变换(linear transformation),并通过偏置项来进行平移(translation)。 给定一个数据集,我们的目标是寻找模型的权重w和偏置b,使得根据模型做出的预测大体符合数据里的真实 价格。输出的预测值由输入特征通过线性模型的仿射变换决定,仿射变换由所选权重和偏置确定。 是训练比单纯的预测需要更多的内存(显存)的原因之 一。此外,这些中间值的大小与网络层的数量和批量的大小大致成正比。因此,使用更大的批量来训练更深 层次的网络更容易导致内存不足(out of memory)错误。 小结 • 前向传播在神经网络定义的计算图中按顺序计算和存储中间变量,它的顺序是从输入层到输出层。 • 反向传播按相反的顺序(从输出层到输入层)计算和存储神经网络的中间变量和参数的梯度。 | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+================
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    换脸、超级夜景等一系列非常实用酷炫的任务,限于篇幅,不再赘 述。 图 1.17 自动生成的图片 图 1.18 艺术风格迁移效果图 1.4.2 自然语言处理 机器翻译(Machine Translation) 过去的机器翻译算法大多是基于统计机器翻译模型,这 也是 2016 年前 Google 翻译系统采用的技术。2016 年 11 月,Google 基于 Seq2Seq 模型上 线了神经机 除了具有空间结构的图片、视频等数据外,序列信号也是非常常见的一种数据类型, 其中一个最具代表性的序列信号就是文本数据。如何处理并理解文本数据是自然语言处理 的一个核心问题。卷积神经网络由于缺乏 Memory 机制和处理不定长序列信号的能力,并 不擅长序列信号的任务。循环神经网络(Recurrent Neural Network,简称 RNN)在 Yoshua Bengio、Jürgen Schmidhuber cuda.memory_allocated 函 数获取目前已分配显存大小,代码如下: # 获取 GPU 0 的总显存 t = torch.cuda.get_device_properties(0).total_memory # 获取保留显存 r = torch.cuda.memory_reserved(0) # 获取已分配显存 a = torch.cuda.memory_allocated(0)
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    PDF version, please visit https://github.com/wanzhenchn/keras-docs-zh. Thanks for the Chinese translation work done by keras-team, this document is produced based on it. Statement: This document can 是诡计多端的,他们带有一些不会实现的 信息;那些穿过抛光的喇叭出来的人背后具有真理,对于看到他们的人来说是完成 的。” Homer, Odyssey 19. 562 ff (Shewring translation). 为什么选择 KERAS? 5 2 为什么选择 Keras? 在如今无数深度学习框架中,为什么要使用 Keras 而非其他?以下是 Keras 与现有替代品的 一些比较。 2.1 Encoder-Decoder for Statistical Machine Transla- tion • On the Properties of Neural Machine Translation: Encoder-Decoder Approaches 关于 KERAS 网络层 94 • Empirical Evaluation of Gated Recurrent Neural
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    BERT, GPT, ...) ○ Fairseq (sequence modeling for NLP & speech) ○ ESPnet (speech recognition, translation, synthesis, ...) ○ Most implementations of recent deep learning papers ○ ... References ● Machine
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 复杂环境下的视觉同时定位与地图构建

    the total frame number), and the tracking success ratio after initialization. Group A: simple translation Group B: there are loops Group C: slow and nearly pure rotation Group D: fast motion with strong
    0 码力 | 60 页 | 4.61 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    quantize_config) 但是,如果你想使用多 GPU 来读取模型,你需要使用 max_memory 而不是 device_map。下面是一段示例 代码: model = AutoGPTQForCausalLM.from_pretrained( model_path, quantize_config, max_memory={i:"20GB" for i in range(4)} ) 接下来,你需要准 osition_embedding)为 32768,因此服务时的最 大长度也是这个值,这会导致更高的内存需求。将此值适当减小通常有助于解决 OOM 问题。另一个您可以 关注的参数是 --gpu-memory-utilization 。默认情况下,该值为 0.9 ,您可以将其调高以应对 OOM 问题。这也是为什么您发现一个大型语言模型服务总是占用大量内存的原因。 1.11 SkyPilot 1.11 30720 个 token 的情况下生成 2048 个 token 的速度和内存占用情况。 • 0.5B: Model Num. GPU Input Length Speed (w/wo FA2) Memory Qwen1.5-0.5B-Chat 1 1 58.54 / 61.34 1.46 Qwen1.5-0.5B-Chat 1 6144 57.93 / 63.57 6.87 Qwen1.5-0
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
共 25 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterArchitecturesTechniquesIntroduction动手深度学习v2深度学习Keras基于PythonMachinePytorchTutorial复杂环境视觉同时定位地图构建AI模型千问qwen中文文档
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩