积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)机器学习(9)

语言

全部英语(8)中文(简体)(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.064 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting in a 2X speedup for bandwidth-bound operations like most pointwise ops) and 2X AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting in a 2X speedup for bandwidth-bound operations like most pointwise ops) and 2X full iteration CUDA graph capture including gradient AllReduce, Optimizer, and Parameter AllGather operations could fail with a CUDA error. We recommend reducing the scope of the CUDA graph capture as a workaround
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    hidden inputs, two primitive operations for the hidden states, and a combination operation as shown in figure 7-8 (left). NASNet predicts these five inputs and operations for every block. Each cell contains image on the left shows the timesteps predicting the hidden states, primitive operations and the combinations operations. Right image shows the structure of a block after applying the predictions from from NASNet. NASNet selects the add operation for combining the output of two predicted primitive operations 3x3 conv and 2x2 maxpool. Source: Learning transferable architectures for scalable image recognition
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    way, let’s look at how to solve this exercise. We use NumPy for this solution. It supports vector operations which operate on a vector (or a batch) of x variables (vectorized execution) instead of one variable crucial for deep learning applications which frequently operate on batches of data. Using vectorized operations also speeds up the execution (and this book is about efficiency, after all!). We highly recommend next operation (XW + b) is a vector addition and σ is an element-wise operation. Both of these operations are cheaper to compute than matrix-multiplication. To optimize the computation latency, we should
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    x.pow(2) Common arithmetic functions are supported, such as: Tensors – Common Operations Tensors – Common Operations ● Transpose: transpose two specified dimensions >>> x = torch.zeros([2, 3]) >>> 3]) >>> x = x.transpose(0, 1) >>> x.shape torch.Size([3, 2]) 2 3 2 3 Tensors – Common Operations ● Squeeze: remove the specified dimension with length = 1 >>> x = torch.zeros([1, 2, 3]) >>> >>> x = x.squeeze(0) >>> x.shape torch.Size([2, 3]) 1 2 3 2 3 (dim = 0) Tensors – Common Operations ● Unsqueeze: expand a new dimension >>> x = torch.zeros([2, 3]) >>> x.shape torch.Size([2,
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    w, n) where n is the number of output channels. This operation requires h x w x n x dk x dk x m operations. Figure 4-20: Depiction of input, output and kernel shapes for a regular convolution with single m x dk x dk operations and produces a (h, w, m) shaped output. The second step performs a pointwise convolution using n (1, 1, m) dimensional kernels. It requires h x w x m x n operations. Hence, the the total number of operations are h x w x m x (dk x dk + n). odeFigureFigure 4-21: Depiction of input, output and kernel shapes for a depthwise separable convolution. Let’s work out the computations to
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    networks." Advances in neural information processing systems 25 (2012): 1097-1105. do linear algebra operations such as multiplying two matrices together much faster than traditional CPUs. Advances in the training GEMMLOWP and XNNPACK for fast inference. Similarly, PyTorch uses QNNPACK to support quantized operations. Refer to Figure 1-17 for an illustration of how infrastructure fits in training and inference linear algebra operations, but only for inference and with a much lower compute budget. It uses about 2 watts of power, and operates in quantized mode with a restricted set of operations. It is available
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 keras tutorial

    folder name and add the above configuration inside keras.json file. We can perform some pre-defined operations to know backend functions. 3. Keras ― Backend Configuration Keras 10 Theano Modules Keras 21 backend module backend module is used for keras backend operations. By default, keras runs on top of TensorFlow backend. If you want, you can switch to other backends the convolution along the height and width. Pooling Layer It is used to perform max pooling operations on temporal data. The signature of the MaxPooling1D function and its arguments with default value
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    • PyTorch Tensors are just like numpy arrays, but they can run on GPU. • Examples: And more operations like: Indexing, slicing, reshape, transpose, cross product, matrix product, element wise multiplication requires_grad=True) •Accessing tensor value: • t.data •Accessing tensor gradient • t.grad • grad_fn – history of operations for autograd • t.grad_fn Loading Data, Devices and CUDA • Numpy arrays to PyTorch tensors •
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: False. Example:: >>> torch.ones(2, 3) tensor([[ 1., 1., 1
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterAutomationCompressionTechniquesMachinePytorchTutorialArchitecturesIntroductionkerastutorial动手深度学习v2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩