积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(23)机器学习(23)

语言

全部英语(13)中文(简体)(10)

格式

全部PDF文档 PDF(23)
 
本次搜索耗时 0.060 秒,为您找到相关结果约 23 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture Notes on Support Vector Machine

    Lecture Notes on Support Vector Machine Feng Li fli@sdu.edu.cn Shandong University, China 1 Hyperplane and Margin In a n-dimensional space, a hyper plane is defined by ωT x + b = 0 (1) where ω ∈ Rn the margin is defined as γ = min i γ(i) (6) 1 ? ? ! ? ! Figure 1: Margin and hyperplane. 2 Support Vector Machine 2.1 Formulation The hyperplane actually serves as a decision boundary to differentiating samples are so-called support vector, i.e., the vectors “supporting” the margin boundaries. We can redefine ω by w = � s∈S αsy(s)x(s) where S denotes the set of the indices of the support vectors 4 Kernel
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    Lecture 6: Support Vector Machine Feng Li Shandong University fli@sdu.edu.cn December 28, 2021 Feng Li (SDU) SVM December 28, 2021 1 / 82 Outline 1 SVM: A Primal Form 2 Convex Optimization Review parallely along ω (b < 0 means in opposite direction) Feng Li (SDU) SVM December 28, 2021 3 / 82 Support Vector Machine A hyperplane based linear classifier defined by ω and b Prediction rule: y = sign(ωTx Scaling ! and " such that min& ' & !() & + " = 1 Feng Li (SDU) SVM December 28, 2021 14 / 82 Support Vector Machine (Primal Form) Maximizing 1/∥ω∥ is equivalent to minimizing ∥ω∥2 = ωTω min ω,b ωTω
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    network layers, deep learning optimizers, data loading utilities, and multi-gpu, and multi-node support. Functions are executed immediately instead of enqueued in a static graph, improving ease of use begin Before you can run an NGC deep learning framework container, your Docker ® environment must support NVIDIA GPUs. To run a container, issue the appropriate command as explained in Running A Container Container and specify the registry, repository, and tags. About this task On a system with GPU support for NGC containers, when you run a container, the following occurs: ‣ The Docker engine loads the image
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    more than two features? In those cases, we could use classical machine learning algorithms like the Support Vector Machine4 (SVM) to learn classifiers that would do this for us. We could rely on deep learning Lookup: Look up the embeddings for the inputs in the embedding table. 4 Support Vector Machine - https://en.wikipedia.org/wiki/Support-vector_machine 3. Train the model: Train the model for the task at hand5 Transformer, which is now showing great promise in computer vision applications as well! Learn Long-Term Dependencies Using Attention Imagine yourself in your favorite buffet restaurant. A variety of
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 星际争霸与人工智能

    Challenge Problems for Artificial Intelligence Imperfect Information Huge State and Action Space Long-Term Planning Temporal and Spatial Reasoning Adversarial Real-time Strategy Multiagent Cooperation
    0 码力 | 24 页 | 2.54 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    Linux (aarch64) CPU 支持 支持 支持 Mac (CPU) 支持 支持 支持 当前最新稳定版本是 Pytorch 1.9.0、长期支持版本是 Pytorch 1.8.2(LTS),此外Python语言支持版本3.6表示支持3.6.x版本, 其中 x 表示 3.6 版本下的各个小版本,依此类推 3.7、3.8 同样 如此。本书代码演示以 Python3.6.5 版本作为
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    1998)中的手写数字。当时,Yann LeCun发表了第一篇通过反向传播成功训练卷积神经网络的 研究,这项工作代表了十多年来神经网络研究开发的成果。 当时,LeNet取得了与支持向量机(support vector machines)性能相媲美的成果,成为监督学习的主流方 法。LeNet被广泛用于自动取款机(ATM)机中,帮助识别处理支票的数字。时至今日,一些自动取款机仍 在运行Yann 效果,但是在更大、更真实的数据集上训练卷积神经 网络的性能和可行性还有待研究。事实上,在上世纪90年代初到2012年之间的大部分时间里,神经网络往往 被其他机器学习方法超越,如支持向量机(support vector machines)。 在计算机视觉中,直接将神经网络与其他机器学习方法进行比较也许不公平。这是因为,卷积神经网络的输 入是由原始像素值或是经过简单预处理(例如居中、缩放)的像 Schmidhuber, J., & others (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. [Hochreiter & Schmidhuber, 1997] Hochreiter, S., & Schmidhuber, J. (1997). Long short‐term
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》1-基础理论篇:TensorFlow 2设计思想

    Experimental support Experimental support Experimental support Supported planned post 2.0 Supported Custom training loop Experimental support Experimental support Support planned post post 2.0 Support planned post 2.0 No support yet Supported Estimator API Limited Support Not supported Limited Support Limited Support Limited Support Limited Support SavedModel:生产级 TensorFlow 模型格式
    0 码力 | 40 页 | 9.01 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-09机器学习-支持向量机

    支持向量机概述 01 支持向量机概述 02 线性可分支持向量机 03 线性支持向量机 04 线性不可分支持向量机 4 1.支持向量机概述 支 持 向 量 机 ( Support Vector Machine, SVM ) 是 一 类 按 监 督 学 习 ( supervised learning)方式对数据进行二元分类的广义线性 分类器(generalized linear 误的情 况。软间隔,就是允许一定量的样本分类错误。 软间隔 硬间隔 线性可分 线性不可分 6 支持向量 1.支持向量机概述 算法思想 找到集合边缘上的若干数据(称为 支持向量(Support Vector)) ,用这些点找出一个平面(称为决 策面),使得支持向量到该平面的 距离最大。 距离 7 1.支持向量机概述 背景知识 任意超平面可以用下面这个线性方程来描述: 大于50000,则使用支 持向量机会非常慢,解决方案是创造、增加更多的特征,然后使用逻辑回归 或不带核函数的支持向量机。 28 参考文献 [1] CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273–297. [2] Andrew Ng. Machine Learning[EB/OL]
    0 码力 | 29 页 | 1.51 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    state that in this book, we have chosen to work with Tensorflow 2.0 (TF) because it has exhaustive support for building and deploying efficient models on devices ranging from TPUs to edge devices at the time would lead to a 32 / 8 = 4x reduction in space. This fits in well since there is near-universal support for unsigned and signed 8-bit integer data types. 4. The quantized weights are persisted with the addition and subtraction, these gains need to be evaluated in practical settings because they require support from the underlying hardware. Moreover, multiplications and divisions are cheaper at lower precisions
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
LectureNotesonSupportVectorMachinePyTorchReleaseEfficientDeepLearningBookEDLChapterArchitectures星际争霸星际争霸人工智能人工智能OpenVINO开发实战系列教程第一一篇第一篇动手深度学习v2TensorFlow快速入门基础理论基础理论设计思想机器课程温州大学09支持向量CompressionTechniques
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩