积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(8)机器学习(8)

语言

全部英语(5)中文(简体)(3)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.067 秒,为您找到相关结果约 8 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    the footprint of the model (size, latency, etc). And as we have described earlier, some of these improved quality metrics can be traded off for a smaller footprint as desired. Continuing with the theme likely wasteful. Regarding the first limitation, we know that model quality can usually be naively improved by acquiring more labels (though the rate of improvement eventually plateaus). However, acquiring model. Even though ResNet-50 was introduced back in 2015, updating it with newer learning techniques improved the accuracy significantly without having to change anything in the architecture. Similarly the
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    cuDNN persistent RNN’s providing improved speed for smaller RNN’s. ‣ Improved multi-GPU performance in both PyTorch c10d and Apex’s DDP. ‣ Faster weight norm with improved mixed-precision accuracy used used through torch.nn.utils.weight_norm. ‣ Improved functionality of the torch.jit.script and torch.jit.tracepreview features including better support for pointwise operations in fusion. ‣ Added support pytorch/pytorch/releases for significant changes from PyTorch 0.4. ‣ Apex is now entirely Python for improved compatibility. Previous versions of Apex will not work with PyTorch 0.4.1 or newer versions. PyTorch
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-15深度学习-GAN

    的参数更新 k 次再对 G的参数更新 1 次. 2. GAN的理论与实现模型 17 GAN的衍生模型 GAN的理论与实现模型 CGAN EBGAN Info GAN DCGAN Improved GAN WGAN ...... 2. GAN的理论与实现模型 18 GAN的衍生模型 GAN的理论与实现模型 (1)CGAN--条件生成对抗网络,为了防止训练崩塌将前置条件加入输入数据。 GAN的理论与实现模型 生成模型 z ~x X 自然输入 编码 判别模型 解码 均方误差 能量 生成输入 随机噪声 23 GAN的衍生模型 GAN的理论与实现模型 (6) Improved GAN--改进生成式对抗网络,提出了使模型训练稳定的五条 经验。 a.特征匹配(feature matching) b.最小批量判断(minibatch
    0 码力 | 35 页 | 1.55 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    earlier because of a lower accuracy, precision / recall, etc. Effectively, we are exchanging the improved quality for a better footprint. Table 3-2 illustrates this concept. So far, we have introduced model with data augmentation achieves the baseline accuracy in fewer epochs, thus it demonstrates improved sample efficiency. It is also possible to show that data augmentation improves label efficiency
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    quality metrics such as accuracy, precision, recall etc. without impacting the model footprint. Improved accuracy can then be exchanged for a smaller footprint / a more efficient model by trimming the
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    sequences and temporal data. These breakthroughs contributed to bigger and bigger models. Although they improved the quality of the solutions, the bigger models posed deployment challenges. What good is a model
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    Sydney, Australia, 2017. [6] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin 和 A. C. Courville, “Improved Training of Wasserstein GANs,” 出处 Advances in Neural Information Processing Systems 30, I. Guyon
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    2017] Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196. [Kim, 2014] Kim, Y. (2014)
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewPyTorchReleaseNotes机器学习课程温州大学15深度GANIntroductionArchitectures深度学习动手v2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩