积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(8)机器学习(8)

语言

全部英语(7)中文(简体)(1)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.054 秒,为您找到相关结果约 8 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    video, etc. to a low-dimensional representation such as a fixed length vector of floating point numbers, thus performing dimensionality reduction1. b) The low-dimensional representation should allow us about animals into just two dimensions, and established a relationship between them purely using numbers, where their relative closeness in the euclidean space on the plot denotes their similarity. We can sequences have the same length. Step 3: Embedding Table Initialization Our embedding table is a floating-point tensor of shape ( , ), where the -th row is an embedding corresponding to the the -th word in
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    both be mapped to 0 in the quantized domain. Keeping all that in mind, it is easy to see that floating-point xmin should map to 0, and xmax should map to 2b-1. How do we map the rest of the floating point formula for mapping a given floating-point value (x) to a quantized value (xq). Assume that you are given values of xmin, xmax, and b? Figure 2-4: Quantizing floating-point continuous values to discrete latency comes from computing the activations. Typically, the weights and activations are 32-bit floating-point values. One of the ideas for reducing model footprint is to reduce the precision for the weights
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    https://cloud.google.com/compute/gpus-pricing. Numbers reported from October 2022. 6 Cloud TPU pricing source: https://cloud.google.com/tpu/pricing. Numbers reported from October 2022. extensively used distillation is a twist on the original distillation recipe, but focused on the problem of smaller numbers of classes, where the benefit from distillation might be diluted. Finally we presented stochastic
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 keras tutorial

    data like text, images or videos will be first converted into array of numbers and then feed into the algorithm. Input numbers may be single dimensional array, two dimensional array (matrix) or multi-dimensional
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Experiment 6: K-Means

    straightforward 24-bit color representation of this image, each pixel is represented as three 8-bit numbers (ranging from 0 to 255) that specify red, green and blue intensity values. Our bird photo contains
    0 码力 | 3 页 | 605.46 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    defined in the class indicates the stacking order of the cells. Each element of layers is a pair of numbers which indicate the cell type and its strides respectively. A normal cell is a type 0 cell with strides
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    repeated for other objects. If the child learns to recognize these objects accurately with fewer numbers of distinct objects being shown, we have made this process more label efficient. Similarly, if you
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    次投掷并记录结果。对于每个骰子,我们将观察到{1, . . . , 6}中的一个值。对于每个值,一种自然的方法是将 它出现的次数除以投掷的总次数,即此事件(event)概率的估计值。大数定律(law of large numbers)告 诉我们:随着投掷次数的增加,这个估计值会越来越接近真实的潜在概率。让我们用代码试一试! 首先,我们导入必要的软件包。 74 2. 预备知识 %matplotlib inline import
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesCompressionTechniquesAdvancedTechnicalReviewkerastutorialExperimentMeansAutomation动手深度学习v2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩