AI大模型千问 qwen 中文文档models and multimodal models are pretrained on large-scale multilingual and multimodal data and post-trained on quality data for aligning to human preferences. Qwen is capable of natural language understanding 首先使用 ChatML 模板对其进行格式化。例如: data = [] for msg in messages: msg = c['messages'] text = tokenizer.apply_chat_template(msg, tokenize=False, add_generation_ �→prompt=False) data.append(text.strip()) 其中每个 named Qwen..."} ] 然后只需通过一行代码运行校准过程: model.quantize(tokenizer, quant_config=quant_config, calib_data=data) 最后,保存量化模型: 14 Chapter 1. 文档 Qwen model.save_quantized(quant_path, safetensors=True, shard_size="4GB")0 码力 | 56 页 | 835.78 KB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesfeatures in the input. Recurrent Neural Nets (RNNs) facilitated learning from the sequences and temporal data. These breakthroughs contributed to bigger and bigger models. Although they improved the quality of you see, books you read, food you enjoy and so on), without the need of knowing all the encyclopedic data about them. When working with deep learning models and inputs such as text, which are not in numerical high-dimensional data into low-dimension, while retaining the properties from the high-dimensional representation. It is useful because it is often computationally infeasible to work with data that has a large0 码力 | 53 页 | 3.92 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesfor weight sharing. However, quantization falls behind in case the data that we are quantizing is not uniformly distributed, i.e. the data is more likely to take values in a certain range than another equally ranges (bins), regardless of the frequency of data. Clustering helps solve that problem by adapting the allocation of precision to match the distribution of the data, which ensures the decoded value deviates callbacks = [update_pruning] tds = train_prep_ds.cache().shuffle(1000, reshuffle_each_iteration=True).batch(BATCH_SIZE) vds = val_prep_ds.batch(256).cache() hist = train(model_for_pruning, tds, vds, epochs=EPOCHS0 码力 | 34 页 | 3.18 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning TechniquesIn the first chapter, we briefly introduced learning techniques such as regularization, dropout, data augmentation, and distillation to improve quality. These techniques can boost metrics like accuracy precision, recall, etc. which often are our primary quality concerns. We have chosen two of them, namely data augmentation and distillation, to discuss in this chapter. This is because, firstly, regularization and dropout are fairly straight-forward to enable in any modern deep learning framework. Secondly, data augmentation and distillation can bring significant efficiency gains during the training phase, which0 码力 | 56 页 | 18.93 MB | 1 年前3
动手学深度学习 v2.0import Image from torch import nn from torch.nn import functional as F from torch.utils import data from torchvision import transforms 目标受众 本书面向学生(本科生或研究生)、工程师和研究人员,他们希望扎实掌握深度学习的实用技术。因为我们 从头开始解 编写了一个“学习”程序。如果我们用一个巨大的带标签的数 据集,它很可能可以“学习”识别唤醒词。这种“通过用数据集来确定程序行为”的方法可以被看作用数据 编程(programming with data)。比如,我们可以通过向机器学习系统,提供许多猫和狗的图片来设计一个 “猫图检测器”。检测器最终可以学会:如果输入是猫的图片就输出一个非常大的正数,如果输入是狗的图片 就会输出一个非常小的负数 学习的一个主要分支,本节稍后的内容将对其 进行更详细的解析。 1.2 机器学习中的关键组件 首先介绍一些核心组件。无论什么类型的机器学习问题,都会遇到这些组件: 1. 可以用来学习的数据(data); 2. 如何转换数据的模型(model); 3. 一个目标函数(objective function),用来量化模型的有效性; 4. 调整模型参数以优化目标函数的算法(algorithm)。0 码力 | 797 页 | 29.45 MB | 1 年前3
Keras: 基于 Python 的深度学习库metrics=['accuracy']) # 生成虚拟数据 import numpy as np data = np.random.random((1000, 100)) labels = np.random.randint(2, size=(1000, 1)) # 训练模型,以 32 个样本为一个 batch 进行迭代 model.fit(data, labels, epochs=10, batch_size=32) compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # 生成虚拟数据 import numpy as np data = np.random.random((1000, 100)) labels = np.random.randint(10, size=(1000, 1)) # 将标签转换为分类的 one-hot one_hot_labels = keras.utils.to_categorical(labels, num_classes=10) # 训练模型,以 32 个样本为一个 batch 进行迭代 model.fit(data, one_hot_labels, epochs=10, batch_size=32) 3.1.5 例子 这里有几个可以帮助你开始的例子! 在 examples 目录 中,你可以找到真实数据集的示例模型:0 码力 | 257 页 | 1.19 MB | 1 年前3
TensorFlow on Yarn:深度学习遇上大数据--tfcmd “python tfTestDemo.py --training_epochs=20” \ #TF运⾏指令� --input /home/xitong/tf-test/data \#训练样本HDFS路径� --output /home/xitong/tf-test/outputTest \ #保存模型的HDFS路径� --worker-num 3 \ #work数量 Spark解决⽅案� • Coordinator负责协调生成ClusterSpec(扩展的TensorFlow gRPC server) • Worker通过读取RDD获取训练样本 • RDD的数据cache到内存或者磁盘供多次迭代训练使用 SparkFlow介绍 SparkFlow与TensorFlow on Yarn对比:� SparkFlow TensorFlow on Yarn0 码力 | 32 页 | 4.06 MB | 1 年前3
keras tutorialof algorithms, inspired from the model of human brain. Deep learning is becoming more popular in data science fields like robotics, artificial intelligence(AI), audio & video recognition and image recognition -U scikit-learn Seaborn Seaborn is an amazing library that allows you to easily visualize your data. Use the below command to install: pip install seaborn You could see the message similar as specified json { "image_data_format": "channels_last", "epsilon": 1e-07, "floatx": "float32", "backend": "tensorflow" } Here, image_data_format represent the data format. epsilon0 码力 | 98 页 | 1.57 MB | 1 年前3
全连接神经网络实战. pytorch 版tensor 理解为是“data”。 我们需要先导入 pytorch,顺便导入 numpy: import torch import numpy as np 现在我们尝试将 list 或者 np.array 转换为 pytorch 的数组: data1 = [ [ 1 , 2 ] , [ 3 , 4 ] ] data_tensor = torch . tensor ( data1 ) print print ( data_tensor . shape ) np_array1 = np . array ( data1 ) data_tensor = torch . from_numpy( np_array1 ) print ( data_tensor . shape ) 输出都是: torch . Size ( [ 2 , 2 ] ) 对于二维 tensor 之间的相乘,@ 和 .matmul 7 y = data_tensor @ data_tensor .T print (y) y = data_tensor ∗ data_tensor print (y) 输出分别是: [ [ 5 , 11] , [11 , 2 5 ] ] [ [ 5 , 11] , [11 , 2 5 ] ] tensor 可以转化为 numpy: np_array2 = data_tensor0 码力 | 29 页 | 1.40 MB | 1 年前3
PyTorch Release Notesfunctionality. PyTorch also includes standard defined neural network layers, deep learning optimizers, data loading utilities, and multi-gpu, and multi-node support. Functions are executed immediately instead nvcr.io/nvidia/ pytorch:-py3 Note: If you use multiprocessing for multi-threaded data loaders, the default shared memory segment size with which the container runs might not be enough To pull data and model descriptions from locations outside the container for use by PyTorch or save results to locations outside the container, mount one or more host directories as Docker® data volumes 0 码力 | 365 页 | 2.94 MB | 1 年前3
共 74 条
- 1
- 2
- 3
- 4
- 5
- 6
- 8













