积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(10)机器学习(10)

语言

全部英语(8)中文(简体)(2)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.038 秒,为您找到相关结果约 10 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    container registry: ‣ Install Docker. ‣ For NVIDIA DGX™ users, see Preparing to use NVIDIA Containers Getting Started Guide. ‣ For non-DGX users, see NVIDIA ® GPU Cloud ™ (NGC) container registry installation (or later R530). The CUDA driver's compatibility package only supports particular drivers. Thus, users should upgrade from all R418, R440, R460, and R520 drivers, which are not forward- compatible with Precision (AMP) for PyTorch is available in this container through the native implementation. AMP enables users to try mixed precision training by adding only three lines of Python to an existing FP32 (default)
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    popular with other users at that time, and so on. If you have seen ‘The Office’ many times over like me, there are chances you might like ‘Seinfeld’ too, which might be popular with other users too. If we train in Google Search to improve relevance of results, and GPT-3 is available as an API for interested users to consume. Having demonstrated the rapid growth of deep learning models, let us now move on to how have a collection of algorithms, techniques, tools, and infrastructure that work together to allow users to train and deploy pareto-optimal models that simply cost less resources to train and/or deploy.
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    PyTorch NumPy x.shape x.shape x.dtype x.dtype ref: https://github.com/wkentaro/pytorch-for-numpy-users see official documentation for more information on data types. Tensors – PyTorch v.s. NumPy ● Many squeeze() x.unsqueeze(1) np.expand_dims(x, 1) ref: https://github.com/wkentaro/pytorch-for-numpy-users Tensors – Device ● Tensors & modules will be computed with CPU by default Use .to() to move tensors
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 keras tutorial

    use a virtual environment while developing Python applications. Linux/Mac OS Linux or mac OS users, go to your project root directory and type the below command to create virtual environment, python3 type the below command, $ cd kerasvenv kerasvenv $ source bin/activate Windows Windows users move inside the “kerasenv” folder and type the below command, .\env\Scripts\activate Step 3: Python
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    Slot model London Heathrow Seattle 02/24/2017 Hotel Booking 与 AWS Mobile Hub 集成 Authenticate users Analyze user behavior Store and share media Synchronize data More …. Track retention Conversational
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    [ijcai2021] UNBERT: User-News Matching BERT for News Recommendation [CIKM2021] Self-Supervised Learning on Users’ Spontaneous Behaviors for Multi-Scenario Ranking in E-commerce 端上 重排 场景1 场景X [CIKM2021] One
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    bottleneck) Develop systems that can automatically adapt and customize them- selves to individual users. Personalized news or mail filter Personalized tutoring Discover new knowledge from large databases
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    GitHub’s Copilot software9 where GPT-3 is used for auto-completing code snippets with an IDE. End-users can also use GPT-3 API10 to build their own applications. Given the large number of possible uses
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    sourced from wikipedia Cat and Dog pages under CC BY-SA 3.0 license. They are authored by wikipedia users Joaquim Alves Gaspar and Losch respectively. The pigeon and parrot images are sourced under Pexels
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    填写内容。注意你需要插入代码样例。要插入代码,请使用 Google 文档插件,例如 有许 多可用的插件)。 • 将共享设置为「每个有链接的人都可以发表评论」。 • 将文档发给 keras-users@googlegroups.com,主题从 [API DESIGN REVIEW] (全大写) 开 始,这样我们才会注意到它。 – 等待评论,回复评论。必要时修改提案。 - 该提案最终将被批准或拒绝。一旦获得
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterIntroductionMachinePytorchTutorialkerastutorial亚马亚马逊AWSAIServicesOverview推荐模型基础特点大规规模大规模深度学习系统设计LectureAdvancedTechniquesTechnicalReviewKeras基于Python
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩