AI大模型千问 qwen 中文文档introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False etions -H "Content-Type: application/json" - �→d '{ "model": "Qwen/Qwen1.5-7B-Chat", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me create( model="Qwen/Qwen1.5-7B-Chat", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about large language models."}, ] ) print("Chat0 码力 | 56 页 | 835.78 KB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquestflite_model_eval(model_content, test_images, test_labels, quantized): """Evaluate the generated TFLite model.""" # Load the TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_content=model_content) content) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() num_correct = 0 num_total tflite_model_eval() function starts by creating a tflite interpreter, which consumes the model file content. The model_content variable holds the contents of the model that we created earlier. Then, It invokes allocate_tensors()0 码力 | 33 页 | 1.96 MB | 1 年前3
PyTorch Brand Guidelines#DE3412 Orange (Print) C00, M61, Y72, K00 Pantone 171 C Secondary Colors When designing content for the overall PyTorch brand, leverage these core palettes. These colors work successfully for supportive backgrounds. When using these grays, please ensure clarity and legibility of written content. To achieve the best AA compliance color contrast, PyTorch has a special color palette to PyTorch Brand colors to use. At the same time, please ensure the clarity and legibility of written content. Example: 9 Brand Guidelines PyTorch Support — Green (Digital) Support — Green (Digital)0 码力 | 12 页 | 34.16 MB | 1 年前3
机器学习课程-温州大学-10深度学习-人脸识别与风格迁移多层卷积能抽取复杂特征 浅层学到的特征为简单的边缘、角 点、纹理、几何形状、表面等 深层学到的特征则更为复杂抽象,为狗 、人脸、键盘等等 24 2.神经风格迁移 ?(?) = ??content(?, ?) + ??style(?, ?) 两个超参数?和?来确定内容代价和风格代价 给你一个内容图像?,给定一个风格图 片?,而你的目标是生成一个新图片? 25 2.神经风格迁移 ?(?)。在 这个步骤中,你实际上更新的是图像?的像素值,也就是100×100×3,比如RGB通 道的图片。 26 2.神经风格迁移 内容代价函数(Content cost function) ?(?) = ??content(?, ?) + ??style(?, ?) 两个超参数?和?来确定内容代价和风格代价 27 2.神经风格迁移 风格代价函数(Style cost function)0 码力 | 34 页 | 2.49 MB | 1 年前3
QCon北京2018-《深度学习在微博信息流排序的应用》-刘博Continueous featues Categorical features normalize one-hot encode embedding one-hot encode Content features ReLU(256) ReLU(128) ReLU(64) Cross product transformation Logistic loss 深度学习应用实践 —— Contextual features Continueous featues Categorical features normalize one-hot encode embedding Content features ReLU(256) ReLU(128) ReLU(64) FM layer Ø DeepFM模型架构 • Deep part — 泛化力 Deep Output0 码力 | 21 页 | 2.14 MB | 1 年前3
动手学深度学习 v2.0...') r = requests.get(url, stream=True, verify=True) with open(fname, 'wb') as f: f.write(r.content) return fname 我们还需实现两个实用函数:一个将下载并解压缩一个zip或tar文件,另一个是将本书中使用的所有数据集 从DATA_HUB下载到缓存目录中。 def download_extract(name torch import nn from d2l import torch as d2l d2l.set_figsize() content_img = d2l.Image.open('../img/rainier.jpg') d2l.plt.imshow(content_img); style_img = d2l.Image.open('../img/autumn-oak.jpg') d2l 验中,我们选择第四卷积块的最后一个卷积层作为内容层,选择每个卷积块的第一个卷积层作为风格层。这 些层的索引可以通过打印pretrained_net实例获取。 style_layers, content_layers = [0, 5, 10, 19, 28], [25] 使用VGG层抽取特征时,我们只需要用到从输入层到最靠近输出层的内容层或风格层之间的所有层。下面构 建一个新的网络net,它只保留需要用到的VGG的所有层。0 码力 | 797 页 | 29.45 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 1 - Introductionbehavior and currently trending content, the model will assign a high probability to Seinfeld. While there is no way of predicting with absolute certainty the exact content that you would end up clicking0 码力 | 21 页 | 3.17 MB | 1 年前3
keras tutorialLearning. Copyright & Disclaimer Copyright 2019 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user validation_data=(x_test, y_test)) Executing the application will give the below content as output: Train on 60000 samples, validate on 10000 samples Epoch 1/20 60000/60000 [=======0 码力 | 98 页 | 1.57 MB | 1 年前3
构建基于富媒体大数据的弹性深度学习计算平台数据存储 数据加速 数据处理 直播 点播 Connect 每天超过10亿图像上传 超过万亿小时的音视频存储 What are they? 内容审核团队 运营分析团队 AI? Content 分类 检测 分割 跟踪 描述 搜索 分析 … 连接 智能 人工智能 = 大数据 + 机器学习 Ataraxia AI Lab (AtLab) 色情 0.01 性感 00 码力 | 21 页 | 1.71 MB | 1 年前3
rwcpu8 Instruction Install miniconda pytorchdefault shell initialization script set by cssystem is ~/.cshrc_user , so you should write the content in ~/.tcshrc to ~/.cshrc_user : source "/export/data/miniconda3/etc/profile.d/conda.csh" conda0 码力 | 3 页 | 75.54 KB | 1 年前3
共 16 条
- 1
- 2













