积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(8)机器学习(8)

语言

全部英语(4)中文(简体)(4)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.065 秒,为您找到相关结果约 8 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 动手学深度学习 v2.0

    gutenberg.org/ebooks/35 8.2. 文本预处理 299 (continued from previous page) tokens = tokenize(lines) for i in range(11): print(tokens[i]) ['the', 'time', 'machine', 'by', 'h', 'g', 'wells'] [] [] [] [] __init__(self, tokens=None, min_freq=0, reserved_tokens=None): if tokens is None: tokens = [] if reserved_tokens is None: reserved_tokens = [] # 按出现频率排序 counter = count_corpus(tokens) self._token_freqs items(), key=lambda x: x[1], reverse=True) # 未知词元的索引为0 self.idx_to_token = [''] + reserved_tokens (continues on next page) 300 8. 循环神经网络 (continued from previous page) self.token_to_idx = {token:
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    word2vec family of algorithms6 (apart from others like GloVe7) which can learn embeddings for word tokens for NLP tasks. The embedding table generation process is done without having any ground-truth labels We would learn embeddings of dimensions each (where we can also view 10 We are dealing with word tokens as an example here, hence you would see the mention of words and their embeddings. In practice, we pairs of input context (neighboring words), and the label (masked word to be predicted). The word tokens are vectorized by replacing the actual words by their indices in our vocabulary. If a word doesn’t
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    decode() to get the output. # Use `max_new_tokens` to control the maximum output length. generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] zip(model_inputs.input_ �→ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] 以前,我们使用 model.chat() (有关更多详细信息,请参阅先前 Qwen 模型中的 modeling_qwen. py )。现在,我们遵循 transformers streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512, streamer=streamer, ) 1.2.2 使用 vLLM 部署 要部署 Qwen1.5,我们建议您使用
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    that were introduced in Transformer-XL help capture better long-term dependencies by attending to tokens from multiple previous segments. Our implementation is based on the codebase that was published by that were introduced in Transformer-XL help capture better long-term dependencies by attending to tokens from multiple previous segments. Our implementation is based on the codebase that was published by that were introduced in Transformer-XL help capture better long-term dependencies by attending to tokens from multiple previous segments. Our implementation is based on the codebase that was published by
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    pretext task. This works well for domains like natural language where your data will be a sequence of tokens. You can extend the analogy to being a tensor of rank , and hide part of the input and train the For BERT, figure 6-3, the pretext tasks are as follows: 1. Masked Language Model (MLM): 15% of the tokens in the given sentence are masked and the model needs to predict the masked token. 2. Next Sentence GPT-3 is a transformer model that only has the decoder (input is a sequence of tokens, and the output is a sequence of tokens too). It excels in natural language generation and hence has been 8 BERT model
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    mathematical representation that our models can use. The quality of these models scales with the number of tokens we learn an embedding for (the size of our vocabulary), and the size of the embedding (known as the embedding table on the left with an embedding for each token. Hashing Trick on the right, where multiple tokens map to the same slot and share embeddings, and thus helps with saving space. To remedy this problem the model. With the Hashing Trick, instead of learning one embedding vector for each token, many tokens can share a single embedding vector. The sharing can be done by computing the hash of the token modulo
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-14深度学习-Vision Transformer (ViT)

    31 5. 模型的代码实现 • 一个图片224x224,分成了49个32x32的patch; • 对这么多的patch做embedding,成49个128向量; • 再拼接一个cls_tokens,变成50个128向量; • 再加上pos_embedding,还是50个128向量; • 这些向量输入到transformer中进行自注意力的特征提取; • 输出的是50个128向量,然
    0 码力 | 34 页 | 2.78 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    build_vocab(train_data) # 打印单词数量:10000++ print(f'Unique tokens in TEXT vocabulary: {len(TEXT.vocab)}') # 打印标签数量:pos+neg print(f'Unique tokens in LABEL vocabulary: {len(LABEL.vocab)}') Out [46]: # 'you', "'ve", 'seen', 'this', 'movie', … '.'] example label: pos Unique tokens in TEXT vocabulary: 10002 Unique tokens in LABEL vocabulary: 2 可以看到训练集和测试集的长度都为 25000,即 25000 条句子数量,分词后的单词使用数 字编码
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
动手深度学习v2EfficientDeepLearningBookEDLChapterArchitecturesAI模型千问qwen中文文档PyTorchReleaseNotesAdvancedTechniquesTechnicalReviewIntroduction机器课程温州大学14VisionTransformerViT深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩