积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(23)机器学习(23)

语言

全部英语(13)中文(简体)(10)

格式

全部PDF文档 PDF(23)
 
本次搜索耗时 0.074 秒,为您找到相关结果约 23 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    available on NGC. Contents of the PyTorch container This container image contains the complete source of the version of PyTorch in /opt/ pytorch. It is prebuilt and installed in the default Python environment Conda-specific packages, which might not be available on PyPI, we recommend building these packages from source. A workaround is to manually install a Conda package manager, and add the conda path to your PYTHONPATH accuracy. This model script is available on GitHub and NGC. ‣ Tacotron 2 and WaveGlow v1.1 model: This text-to-speech (TTS) system is a combination of the following neural network models: ‣ A modified Tacotron
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    quality data for aligning to human preferences. Qwen is capable of natural language understanding, text generation, vision understanding, audio understanding, tool use, role play, playing as AI agent, etc {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) # Directly "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True (续下页) 6 Chapter 1. 文档 Qwen (接上页) ) model_inputs = tokenizer([text], return_tensors="pt")
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    eliminating the need to generate samples beforehand. Next, we will discuss a few label invariant image and text transformation techniques. Image Transformations This discussion is organized into the following fill-up or interpolation algorithms to address the holes. Figure 3-6: Image Transformations. The source image (center) is taken from Google Open Images Dataset V6. It is authored by Mike Baird and is licensed hands-on project awaits towards the end of the text transformation section as well. Text Transformations Like the image transformations, there are simple text transformation techniques that would make a
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . 59 5.2.1 Dense [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2.2 Activation [source] . . . . . . . . . . . . . . . . . . . . . . . Dropout [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2.4 Flatten [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2.5 Input [source] . . . . . . . . . . . . . . . . 61 5.2.6 Reshape [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2.7 Permute [source] . . . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    the model should be able to encode the given text in a sequence of embeddings such that there is some semantic relationship preserved between pieces of text that are related. “A very happy birthday” and two sentences and , predict if follows . Figure 6-3: Pre-training and Fine-tuning steps for BERT. Source: Develin et al. For BERT, the pre-training loss is the mean of the losses for the above two tasks Predicting the degree of rotation of a given image. Figure 6-4: Pretext tasks for vision problems. Source: Doersch et al., Gidaris et al.. Once the general model is ready, we can fine-tune it for a specific
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    Proceedings, 2011. Figure 1-2: Growth of parameters in Computer Vision and NLP models over time. (Data Source) We have seen a similar effect in the world of Natural Language Processing (NLP) (see Figure 1-2) optimizing its various aspects. GPT-3 has captured the attention by being able to generate realistic text accompanying the given prompts. Both these models have been deployed in production. BERT is used in Art, and as a result we have seen progressive improvements on benchmarks like image classification, text classification. Each new breakthrough in neural networks has led to an increase in the network complexity
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 keras tutorial

    Keras i Keras ii About the Tutorial Keras is an open source deep learning framework for python. It has been developed by an artificial intelligence researcher Theano, etc., for creating deep learning models. Overview of Keras Keras runs on top of open source machine libraries like TensorFlow, Theano or Cognitive Toolkit (CNTK). Theano is a python library named “kerasvenv”. Move to the folder and type the below command, $ cd kerasvenv kerasvenv $ source bin/activate Windows Windows users move inside the “kerasenv” folder and type the below command
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    knowing all the encyclopedic data about them. When working with deep learning models and inputs such as text, which are not in numerical format, having an algorithmic way to meaningfully represent these inputs the following goals: a) To compress the information content of high-dimensional concepts such as text, image, audio, video, etc. to a low-dimensional representation such as a fixed length vector of floating From the perspective of training the model, it is agnostic to what the embedding is for (a piece of text, audio, image, video, or some abstract concept). Here is a quick recipe to train embedding-based
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    #@save """返回Fashion-MNIST数据集的文本标签""" text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat', 'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot'] return [text_labels[int(i)] for i in labels] 我 隔 的文本序列对,序列对由英文文本序列和翻译后的法语文本序列组成。请注意,每个文本序列可以是一个句 子,也可以是包含多个句子的一个段落。在这个将英语翻译成法语的机器翻译问题中,英语是源语言(source language),法语是目标语言(target language)。 #@save d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng path.join(data_dir, 'fra.txt'), 'r', encoding='utf-8') as f: return f.read() raw_text = read_data_nmt() print(raw_text[:75]) Downloading ../data/fra-eng.zip from http://d2l-data.s3-accelerate.amazonaws
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 PyTorch Brand Guidelines

    Brand Guidelines PyTorch Brand Guidelines What is PyTorch? PyTorch is an open source machine learning framework that accelerates the path from research prototyping to production deployment. PyTorch Support — Green (Digital) Support — Green (Digital) Coding Text— Light Gray (Digital) Coding Text— Dark Gray (Digital) Coding Background— Dark (Digital) Coding Background—
    0 码力 | 12 页 | 34.16 MB | 1 年前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
PyTorchReleaseNotesAI模型千问qwen中文文档EfficientDeepLearningBookEDLChapterTechniquesKeras基于Python深度学习AdvancedTechnicalReviewIntroductionkerastutorialArchitectures动手v2BrandGuidelines
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩