积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(22)机器学习(22)

语言

全部中文(简体)(12)英语(10)

格式

全部PDF文档 PDF(22)
 
本次搜索耗时 0.069 秒,为您找到相关结果约 22 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 动手学深度学习 v2.0

    ,并为论坛提供讨论。 虽然我们的体系尚不完善,但这些选择在相互冲突的问题之间提供了一个很好的妥协。我们相信,这可能是 第一本使用这种集成工作流程出版的书。 1 http://distill.pub 2 http://discuss.d2l.ai 2 目录 在实践中学习 许多教科书教授一系列的主题,每一个都非常详细。例如,Chris Bishop的优秀教科书 (Bishop, 2006) """将时间机器数据集加载到文本行的列表中""" with open(d2l.download('time_machine'), 'r') as f: lines = f.readlines() return [re.sub('[^A-Za-z]+', ' ', line).strip().lower() for line in lines] lines = read_time_machine() print(f'# 量样本的损失求平均,因此优化算法中 的梯度不需要除以批量大小。 def sgd(params, states, hyperparams): for p in params: p.data.sub_(hyperparams['lr'] * p.grad) p.grad.data.zero_() 下面实现一个通用的训练函数,以方便本章后面介绍的其他优化算法使用。它初始化了一个线性回归模型,
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    strong semi-supervised learners. Advances in neural information processing systems, 33, 22243-22255. 17 A head is a trainable sub-network that takes in the output of the base model (in this case the frozen 22 Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017). Mathematically, we are given a pair of sequences and with shapes (n, d) and (m, d) where "Character-level convolutional networks for text classification." Advances in neural information processing systems 28 (2015): 649-657. We vectorize the input samples using a TextVectorization layer. This layer collects
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 34. 动量与lr衰减

    动量与学习率衰减 主讲人:龙良曲 Tricks ▪ momentum ▪ learning rate decay Momentum https://distill.pub/2017/momentum/ No momentum With appr. momentum momentum Learning rate tunning Learning rate decay Scheme
    0 码力 | 14 页 | 816.20 KB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    d\textquotesingle Alch é-BucF., FoxE., & GarnettR. (编辑), Advances in Neural Information Processing Systems 32 (页 8024–8035). Curran Associates, Inc. 检索来源: http://papers.neurips.cc/paper/9015-pytorch-an 基本数学运算函数,本节将系统地介 绍 PyTorch 中常见的数学运算函数。 4.9.1 加、减、乘、除运算 加、减、乘、除是最基本的数学运算,分别通过 torch.add、torch.sub、torch.mul、 torch.div 函数实现,PyTorch 已经重载了+、 − 、 ∗ 、/运算符,通常推荐直接使用运算符 来完成加、减、乘、除运算,简单清晰。 预览版202112 USA, 2011. [3] J. Mizera-Pietraszko 和 P. Pichappan, Lecture Notes in Real-Time Intelligent Systems, Springer International Publishing, 2017. 预览版202112
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    The method implemented in your system depends on the DGX OS version that you installed (for DGX systems), the NGC Cloud Image that was provided by a Cloud Service Provider, or the software that you installed 15 ‣ OpenMPI 4.1.4+ ‣ GDRCopy 2.3 ‣ TensorBoard 2.9.0 ‣ Nsight Compute 2023.1.1.4 ‣ Nsight Systems 2023.2.3.1001 ‣ NVIDIA TensorRT™ 8.6.1.6 ‣ Torch-TensorRT 1.5.0.dev0 ‣ NVIDIA DALI® 1.27.0 ‣ 15 ‣ OpenMPI 4.1.4+ ‣ GDRCopy 2.3 ‣ TensorBoard 2.9.0 ‣ Nsight Compute 2023.1.1.4 ‣ Nsight Systems 2023.2.3.1001 ‣ NVIDIA TensorRT™ 8.6.1.6 ‣ Torch-TensorRT 1.5.0.dev0 ‣ NVIDIA DALI® 1.26.0 ‣
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》1-TensorFlow初印象

    Google Brain Team, Building Intelligent Systems with Large Scale Deep Learning 1990s��������������� Jeff Dean, Google Brain Team, Building Intelligent Systems with Large Scale Deep Learning ������������������ Dean, Google Brain Team, Building Intelligent Systems with Large Scale Deep Learning ����� Google ��� Jeff Dean, Google Brain Team, Building Intelligent Systems with Large Scale Deep Learning TensorFlow
    0 码力 | 34 页 | 35.16 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    John Denker, and Sara Solla. "Optimal brain damage." Advances in neural information processing systems 2 (1989). As you can deduce, the parameter changes the influence of the previous value of momentum "Deconstructing lottery tickets: Zeros, signs, and the supermask." Advances in neural information processing systems 32 (2019). 10 Liu, Zhuang, et al. "Rethinking the value of network pruning." arXiv preprint arXiv:1810 weights and connections for efficient neural network." Advances in neural information processing systems 28 (2015). 7 Dettmers, Tim, and Luke Zettlemoyer. "Sparse networks from scratch: Faster training
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    Fellow, National University of Singapore, Singapore. Research Interests: Distributed Algorithms and Systems, Wireless Net- works, Mobile Computing, Internet of Things. Feng Li (SDU) Overview September 6, driver Feng Li (SDU) Overview September 6, 2023 11 / 57 Why Do We Need Machine Learning? Develop systems that are too difficult/expensive to construct manually because they require specific detailed skills skills or knowledge tuned to a specific task (knowledge engineering bottleneck) Develop systems that can automatically adapt and customize them- selves to individual users. Personalized news or mail filter
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 keras tutorial

    function. Sequential model exposes Model class to create customized models as well. We can use sub-classing concept to create our own complex model. Functional API: Functional API is basically used create our own customized layers. Customized layer can be created by sub-classing the Keras.Layer class and it is similar to sub-classing Keras models. Core Modules Keras also provides a lot of built-in learn how to create new layer in this chapter. Keras provides a base layer class, Layer which can sub-classed to create our own customized layer. Let us create a simple layer which will find weight based
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    Partitions for Memory-Efficient Recommendation Systems Twiiter [RecSys21] Model Size Reduction Using Frequency Based Double Hashing for Recommender Systems 9 千 万 key hash1(key) hash2(key) 千 万 业界⽅案:Double
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
共 22 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
动手深度学习v2EfficientDeepLearningBookEDLChapterArchitecturesPyTorch入门实战34动量lr衰减深度学习ReleaseNotesTensorFlow快速印象AdvancedCompressionTechniquesLectureOverviewkerastutorial推荐模型基础特点大规规模大规模系统设计
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩