积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)机器学习(13)

语言

全部英语(8)中文(简体)(5)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.030 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    later R515), 525.85 (or later R525), or 530.30 (or later R530). The CUDA driver's compatibility package only supports particular drivers. Thus, users should upgrade from all R418, R440, R460, and R520 manually install a Conda package manager, and add the conda path to your PYTHONPATH for example, using export PYTHONPATH="/opt/conda/lib/python3.8/site-packages" if your Conda package manager was installed in later R515), 525.85 (or later R525), or 530.30 (or later R530). The CUDA driver's compatibility package only supports particular drivers. Thus, users should upgrade from all R418, R440, R460, and R520
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    the best values for these hyperparameters and see if we can do better. We will use the keras_tuner package which has an implementation of HyperBand. The hyperband algorithm requires two additional parameters: puts everything together and runs the search for 150 episodes. controller = Controller() child_manager = ChildManager() start_state = np.array([random.randrange(len(STATE_SPACE[0]))]) for episode in reshape(TIMESTEP_ADDRESS_SPACE) # Evaluate the child generated by the controller reward, accuracy = child_manager.get_rewards(config) print( 'Episode: {} Reward: {} Accuracy: {}'.format( episode, reward, accuracy
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    langchain.llms.base import LLM from typing import Any, List, Mapping, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun device = "cuda" # the device to load the model onto model = AutoModelForCausalLM history_len = history_len def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: messages = [ {"role": "system", "content":
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    torch.cuda.FloatTensor *Assume 't' is a tensor Autograd • Autograd • Automatic Differentiation Package • Don’t need to worry about partial differentiation, chain rule etc.. • backward() does that • loss a tensor Autograd (continued) • Manual Weight Update - example Optimizer • Optimizers (optim package) • Adam, Adagrad, Adadelta, SGD etc.. • Manually updating is ok if small number of weights • Imagine
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 构建基于富媒体大数据的弹性深度学习计算平台

    comparison Model Fusion Gray Update Auto Evaluation Log Server Graph Abstraction Data Flow API Manager Pipeline AVA 弹性深度学习平 台 L1 L2 L3 L4 L5 原子API 基础模型 感知层1 API 感知层2 API Vision 综合API 业务逻辑API
    0 码力 | 21 页 | 1.71 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒

    Kubernetes对NUMA、异构计算、存储设备的调度能力待加强 1.6 nvidia/gpu custom scheduler 1.8 local-volume 1.10 CPU manager Device plugin 1.9 volume-awared scheduling Go语言在高性能系统中的实践经验 • 为什么用Go - 比起C++,更易于实践各种并发模式 -
    0 码力 | 23 页 | 9.26 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    © 2018 Bloomberg Finance L.P. All rights reserved. Qcon Beijing April 21, 2018 Biye Li Team Manager, Data Technologies Automation Xiangqian Yu Team Lead, Derivatives Data From Keyboards to Neural Networks
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    notebook here. Tensorflow provides easy access to this dataset through the tensorflow-datasets package. Let’s start by loading the training and validation splits of the dataset. The make_dataset() function keras.losses as losses We will install the pydub dependency required by the tensorflow_datasets package for processing audio data, and load the speech_commands dataset from TFDS. !pip install pydub data_ds
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 rwcpu8 Instruction Install miniconda pytorch

    the activated environment, e.g.: 3. Install PyTorch It may be very slow to download the pytorch package, but that's not because you're installing PyTorch to a remote folder. It is a known problem that
    0 码力 | 3 页 | 75.54 KB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    has been called a “free version of Matlab”. If you are using Octave, be sure to install the Image package as well (available for Windows as an option in the installer, and available for Linux from Octave-Forge
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterAutomationAI模型千问qwen中文文档Tutorial构建基于媒体数据弹性深度学习计算平台QCon北京2018未来都市智慧城市机器视觉陈宇恒键盘输入键盘输入神经网络神经网神经网络彭博应用李碧野Techniquesrwcpu8InstructionInstallminicondapytorchExperimentLinearRegression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩