积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(71)机器学习(71)

语言

全部中文(简体)(49)英语(22)

格式

全部PDF文档 PDF(71)
 
本次搜索耗时 0.069 秒,为您找到相关结果约 71 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 动手学深度学习 v2.0

    记事本”选项下载后解压代码, 或者可以按照如下方式进行下载: mkdir d2l-zh && cd d2l-zh curl https://zh-v2.d2l.ai/d2l-zh-2.0.0.zip -o d2l-zh.zip unzip d2l-zh.zip && rm d2l-zh.zip cd pytorch 注意:如果没有安装unzip,则可以通过运行sudo apt install unzip进行安装。 exp(·): 指数函数 • 1X : 指示函数 • (·)⊤: 向量或矩阵的转置 • X−1: 矩阵的逆 • ⊙: 按元素相乘 • [·, ·]:连结 • |X|:集合的基数 • ∥ · ∥p: :Lp 正则 • ∥ · ∥: L2 正则 • ⟨x, y⟩:向量x和y的点积 • �: 连加 • �: 连乘 • def =:定义 微积分 • dy dx:y关于x的导数 • ∂y a f(x) dx: f在a到b区间上关于x的定积分 • � f(x) dx: f关于x的不定积分 14 目录 概率与信息论 • P(·):概率分布 • z ∼ P: 随机变量z具有概率分布P • P(X | Y ):X | Y 的条件概率 • p(x): 概率密度函数 • Ex[f(x)]: 函数f对x的数学期望 • X ⊥ Y : 随机变量X和Y 是独立的 • X ⊥ Y |
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Experiment 2: Logistic Regression and Newton's Method

    negative class using the find command: % find returns the i n d i c e s of the % rows meeting the s p e c i f i e d condition pos = find (y == 1 ) ; neg = find ( y == 0 ) ; % Assume the f e a t u r e of x plot ( x ( pos , 2) , x ( pos , 3 ) , ’+’ ) ; hold on plot ( x ( neg , 2) , x ( neg , 3) , ’ o ’ ) Your plot should look like the following: 1 10 20 30 40 50 60 70 Exam 1 score 40 45 50 55 Recall that in logistic regression, the hypothesis function is hθ(x) = g(θT x) = 1 1 + e−θT x = P(y = 1 | x; θ) (1) Matlab/Octave does not have a library function for the sigmoid, so you will have
    0 码力 | 4 页 | 196.41 KB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    7407&courseId=1209092816&_trace_c _p_k2_=9e74eb6f891d47cfaa6f00b5cb 5f617c https://study.163.com/course/courseMain.h tm?share=2&shareId=480000001847407& courseId=1208894818&_trace_c_p_k2_=8 d1b10e04bd34d69855bb71da65b0549 10 from torch.distributions import Bernoulli dist = Bernoulli(torch.tensor([0.3])) # 创建 p=0.3 的 Bernoulli 分布 dist.sample(torch.Size([10])) # 采样 10 次 Out[37]: tensor([[1.], [0 向量?可以直接实现一个网络层,代码如下: In [44]: w = torch.ones(4, 3) # 定义 W 张量 b = torch.zeros(3) # 定义 b 张量 o = x@w+b # X@W+b 运算 Out[44]: tensor([[ 3.0048, 3.0048, 3.0048], [-3.2164, -3.2164, -3
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    nlpaug import flow as naf [nltk_download(item) for item in ['punkt', 'wordnet']] aug_args = dict(aug_p=0.3, aug_max=40) chain = [ nas.random.RandomSentAug(**aug_args), naw.RandomWordAug(action='delete' RandomWordAug(action='substitute', **aug_args), nac.KeyboardAug() ] flow = naf.Sometimes(chain, pipeline_p=0.3) The nlpaug_fn() function just wraps up the augmentation calls in a tf.py_function, a tensorflow Joy Holland. The bottom-center is a tortoise (resized) from Open Images Dataset V6 and authored by J. P. Both the images are licensed under CC BY 2.0. For example, the top-right image is an average mix
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Lecture 3: Logistic Regression

    hθ(x) and Pr(Y = 0 | X = x; θ) = 1 − hθ(x), then we have the following probability mass function p(y | x; θ) = Pr(Y = y | X = x; θ) = (hθ(x))y(1 − hθ(x))1−y where y ∈ {0, 1} Feng Li (SDU) Logistic of y ∈ {0, 1}, then p(y | x; θ) = 1 1 + exp(−yθTx) Assuming the training examples were generated independently, we de- fine the likelihood of the parameters as L(θ) = m � i=1 p(y(i) | x(i); θ) = · · , K} y(i) ∈ {1, 2, · · · , K} for ∀i Hypothesis function hθ(x) = � ���� p(y = 1 | x, θ) p(y = 2 | x, θ) ... p(y = K | x, θ) � ���� = 1 �K k=1 exp � θ(k)Tx � � ������� exp � θ(1)Tx � exp
    0 码力 | 29 页 | 660.51 KB | 1 年前
    3
  • pdf文档 Lecture 7: K-Means

    assignment (i.e., probability of being assigned to each cluster: say K = 3 and for some point xi, p1 = 0.7; p2 = 0.2; p3 = 0.1) Works well only is the clusters are roughly of equal sizes Probabilistic clustering 2021 33 / 46 Divisive Clustering Bisecting K-means: Repeating 2-means algorithm until we have a de- sired number of clusters MST-based method: Build a minimum spanning tree from the dissim- ilarity
    0 码力 | 46 页 | 9.78 MB | 1 年前
    3
  • pdf文档 PyTorch Brand Guidelines

    as copy, illustrations or photography. This spacing is determined by the measurements of the “P” within the PyTorch wordmark. Dos and Don'ts Leverage the color palettes and keep things simple (Digital) Orange Light 1 (Digital) Orange (Digital) Orange (Print) #B92B0F #F05F42 #F2765D #DE3412 Orange (Print) C00, M61, Y72, K00 Pantone 171 C Secondary Colors When designing content
    0 码力 | 12 页 | 34.16 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》7-实战TensorFlow人脸识别

    �e������������� �������� ������������D��� ���� ���������������� �������� ���������������� �������� ��������P���e��� ������� �������������� ���� ������ ������������t��� ������� ������������t��� �g����� ���g�����������t ���������������� ��e� ������ ������������� ���� �������� ���������������� ��e� �������� e�P�������� ��e� ��� e�P���� ��e� �������� ���������������� ��e� �����n ��������������� ���� ����������� LFW.Labeled in the Wild/ LFW �t������i 6000 �����h�����vh�i 300 �u��300 ���� ���ha��c��d����t���LFW���s�d�����p� 2013�:�����������f�������l��+�c��� 2014�:����������c��� 2014��s��c��+���.����tw����/e�������������
    0 码力 | 81 页 | 12.64 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    plot your training set (and label the axes): figure % open a new f i g u r e window plot (x , y , ’ o ’ ) ; ylabel ( ’ Height in meters ’ ) xlabel ( ’Age in years ’ ) You should see a series of data plotting commands will look something like this: hold on % Plot new data without c l e a r i n g old p l o t plot ( x ( : , 2 ) , x∗ theta , ’− ’ ) % remember that x i s now a matrix % with 2 columnsand the second % column contains the time info legend ( ’ Training data ’ , ’ Linear r e g r e s s i o n ’ ) Note that for most machine learning problems, x is very high dimensional, so we don’t be able
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    transform=ToTensor () , target_transform=Lambda( lambda y : torch . zeros (10 , dtype=torch . f l o a t ) . scatter_ (0 , torch . tensor (y) , value=1)) ) transf orm 是对数据的转换,ToTensor() 函数将 PIL 图像或者 10) , ) def forward ( s e l f , x) : x = s e l f . f l a t t e n (x) l o g i t s = s e l f . linear_relu_stack (x) return l o g i t s model = NeuralNetwork () print ( model ) 11 12 2.1. 基本网络结构 这里使用 dataloader ) : # Compute prediction and l o s s pred = model (X) l o s s = loss_function ( pred , y) # Backpropagation optimizer . zero_grad () #梯 度 归0w l o s s . backward () optimizer . step () i
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
共 71 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 8
前往
页
相关搜索词
动手深度学习v2ExperimentLogisticRegressionandNewtonMethodPyTorch深度学习EfficientDeepLearningBookEDLChapterTechniquesLectureMeansBrandGuidelinesTensorFlow快速入门实战人脸识别人脸识别Linear连接神经网络神经网神经网络pytorch
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩