积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(7)机器学习(7)

语言

全部英语(6)中文(简体)(1)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.063 秒,为您找到相关结果约 7 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    distributions Joint probability distribution Independence Conditional probability distribution Bayes’ Theorem ... ... Feng Li (SDU) GDA, NB and EM September 27, 2023 3 / 122 Sample Space, Events and Probability =y(x)dx P(Y = y) = pY (y) Feng Li (SDU) GDA, NB and EM September 27, 2023 16 / 122 Bayes’ Theorem Bayes’ theorem (or Bayes’ rule) describes the probability of an event, based on prior knowledge of conditions A)P(A) P(B) In the Bayesian interpretation, probability measures a “degree of be- lief”, and Bayes’ theorem links the degree of belief in a proposition before and after accounting for evidence. For proposition
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    thus is a concave function regardless of the original problem; iii) G can be −∞ for some α and β Theorem 1. Lower Bounds Property: If α ⪰ 0, then G(α, β ) ≤ p∗ where p∗ is the optimal value of the (original) We now choose the minimizer of f(˜ω) over all feasible ˜ω’s to get p∗ ≥ G(α, β ). It is shown by Theorem 1 that, the Lagrange dual function provides a non-trivial lower bound to the primal optimization Complementary Slackness Let ω∗ be a primal optimal point and (α∗, β ∗) be a dual optimal point. Theorem 2. Complementary Slackness: If strong duality holds, then α∗ i gi(ω∗) = 0 (16) for ∀i = 1, 2, ·
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    Bayes and EM Algorithm Feng Li fli@sdu.edu.cn Shandong University, China 1 Bayes’ Theorem and Inference Bayes’ theorem is stated mathematically as the following equation P(A | B) = P(B | A)P(A) P(B) hθ(x) to model the relationship between feature vector x and label y, while we now rely on Byes’ theorem to characterize the relationship through parameters θ = {P(X = x | Y = y), P(Y = y)}x,y. 2 Gaussian and pX|Y (x | 1) according to our assumptions (5)∼(7), and make predictions according to Bayes’ theorem (see Eq. (2)). Specifically, given a test data featured by ˜x, we compare P(Y = ˜y | X = ˜x) = pY
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 Lecture 2: Linear Regression

    f (x) w.r.t. xi Feng Li (SDU) Linear Regression September 13, 2023 10 / 31 Gradient (Contd.) Theorem For any n-dimensional vector u, the directional derivative of f in the direction of u can be represented BATC Feng Li (SDU) Linear Regression September 13, 2023 26 / 31 Revisiting Least Square (Contd.) Theorem: The matrix ATA is invertible if and only if the columns of A are linearly independent. In this case case, there exists only one least-squares solution θ = (X TX)−1X TY Prove the above theorem in Problem Set 1. Feng Li (SDU) Linear Regression September 13, 2023 27 / 31 Probabilistic Interpretation
    0 码力 | 31 页 | 608.38 KB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    probability),并用P(B = b | A = a)表示它:它是B = b的概率,前提是A = a已发生。 贝叶斯定理 使用条件概率的定义,我们可以得出统计学中最有用的方程之一:Bayes定理(Bayes’theorem)。根据乘法法 则(multiplication rule )可得到P(A, B) = P(B | A)P(A)。根据对称性,可得到P(A, B) = P(A | B)P(B)。 假设P(B) 2的可能性将会降低,我们的训练误差将与泛化误差相匹配。 140 4. 多层感知机 统计学习理论 由于泛化是机器学习中的基本问题,许多数学家和理论家毕生致力于研究描述这一现象的形式理论。在同名 定理(eponymous theorem)62中,格里文科和坎特利推导出了训练误差收敛到泛化误差的速率。在一系列 开创性的论文中,Vapnik和Chervonenkis63 将这一理论扩展到更一般种类的函数。这项工作为统计学习理论 验法则相当有用:统计学家认为,能够轻松解释任意事实的模型是复杂的,而表达能力有限但仍能很好地解 62 https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem 63 https://en.wikipedia.org/wiki/Vapnik%E2%80%93Chervonenkis_theory 4.4. 模型选择、欠拟合和过拟合 141 释数据
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    time: • Google Colab provides free Tesla K80 GPU of about 12GB. You can run the session in an interactive Colab Notebook for 12 hours. • https://colab.research.google.com/ Misc • Dynamic VS Static Computation
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    before you proceed to step 3. 3. To run the container image, select one of the following modes: ‣ Interactive ‣ If you have Docker 19.03 or later, a typical command to launch the container is: docker run nvidia-docker run -it --rm -v local_dir:container_dir nvcr.io/nvidia/ pytorch:-py3 ‣ Non-interactive ‣ If you have Docker 19.03 or later, a typical command to launch the container is: docker run
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
共 7 条
  • 1
前往
页
相关搜索词
LectureGaussianDiscriminantAnalysisNaiveBayesNotesonSupportVectorMachineLinearRegression动手深度学习v2PyTorchTutorialRelease
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩