PyTorch Release NotescuBLAS 12.1.3.1 ‣ NVIDIA cuDNN 8.9.3 ‣ NVIDIA NCCL 2.18.3 ‣ NVIDIA RAPIDS™ 23.06 ‣ Apex ‣ rdma-core 39.0 ‣ NVIDIA HPC-X 2.15 ‣ OpenMPI 4.1.4+ ‣ GDRCopy 2.3 ‣ TensorBoard 2.9.0 ‣ Nsight Compute For more information about AMP, see the Training With Mixed Precision Guide. Tensor Core Examples The tensor core examples provided in GitHub and NGC focus on achieving the best performance and convergence cuBLAS 12.1.3.1 ‣ NVIDIA cuDNN 8.9.2 ‣ NVIDIA NCCL 2.18.1 ‣ NVIDIA RAPIDS™ 23.04 ‣ Apex ‣ rdma-core 39.0 ‣ NVIDIA HPC-X 2.15 ‣ OpenMPI 4.1.4+ ‣ GDRCopy 2.3 ‣ TensorBoard 2.9.0 ‣ Nsight Compute0 码力 | 365 页 | 2.94 MB | 1 年前3
keras tutorial............................................................................................ 18 Core Modules ......................................................................................... intelligence(AI), audio & video recognition and image recognition. Artificial neural network is the core of deep learning methodologies. Deep learning is supported by various libraries such as Theano, TensorFlow Architecture of Keras Keras API can be divided into three main categories: Model Layer Core Modules In Keras, every ANN is represented by Keras Models. In turn, every Keras Model is composition0 码力 | 98 页 | 1.57 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquescreate_model(): # Initialize the core model core_args = dict(input_shape=(IMG_SIZE, IMG_SIZE, 3), include_top=False) core = apps.resnet50.ResNet50(**core_args) core.trainable = False # Create the full full model with input, preprocessing, core and softmax layers. model = tf.keras.Sequential([ layers.Input([IMG_SIZE, IMG_SIZE, 3], dtype = tf.uint8), layers.Lambda(lambda x: tf.cast(x, tf.float32)) float32)), layers.Lambda(lambda x: apps.resnet.preprocess_input(x)), core, layers.Flatten(), layers.Dropout(DROPOUT_RATE), layers.Dense(NUM_CLASSES, activation='softmax') ]) adam = optimizers.Adam(learn0 码力 | 56 页 | 18.93 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationdropout_rate=DROPOUT_RATE): # Initalize the core model core_args = dict(input_shape=(IMG_SIZE, IMG_SIZE, 3), include_top=False) core = apps.resnet50.ResNet50(**core_args) core.trainable = False # Setup the top Lambda(lambda x: tf.cast(x, tf.float32)), layers.Lambda(lambda x: apps.resnet.preprocess_input(x)), core, layers.Flatten(), layers.Dropout(dropout_rate), layers.Dense(NUM_CLASSES, activation='softmax')0 码力 | 33 页 | 2.48 MB | 1 年前3
AI大模型千问 qwen 中文文档families support a maximum of 32K context window size. import torch from llama_index.core import Settings from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.huggingface import HuggingFaceLLM huggingface import HuggingFaceEmbedding # Set prompt template for generation (optional) from llama_index.core import PromptTemplate def completion_to_prompt(completion): return f"<|im_start|>system\n<|im_e 现在我们可以从文档或网站构建索引。 以下代码片段展示了如何为本地名为’document’的文件夹中的文件(无论是 PDF 格式还是 TXT 格式)构 建索引。 from llama_index.core import VectorStoreIndex, SimpleDirectoryReader documents = SimpleDirectoryReader("./document").load_data()0 码力 | 56 页 | 835.78 KB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 1 - Introductionestablish our motivation behind seeking efficiency in deep learning models. We will also introduce core areas of efficiency techniques (compression techniques, learning techniques, automation, efficient tradeoff. To that end, we can think of work on efficient deep learning to be categorized in roughly four core areas, with infrastructure and hardware forming the foundation (see Figure 1-7). 7 Lossy compression detail in Chapter 2. (Figure 1-7: A mental model of Efficient Deep Learning, which comprises the core areas and relevant techniques as well as the foundation of infrastructure, hardware and tools.)0 码力 | 21 页 | 3.17 MB | 1 年前3
《TensorFlow 快速入门与实战》2-TensorFlow初接触Try it “Hello TensorFlow” “Hello TensorFlow” Output: 2018-12-19 02:00:58.943154: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was0 码力 | 20 页 | 15.87 MB | 1 年前3
PyTorch Brand GuidelinesPantone 171 C Secondary Colors When designing content for the overall PyTorch brand, leverage these core palettes. These colors work successfully for print and digital communications. When using0 码力 | 12 页 | 34.16 MB | 1 年前3
亚马逊AWSAI Services Overviewframe/sec with 640x480 resolution 处处可部署 Beyond BlindTool by Joseph Paul Cohen, demo on Nexus 4 Fit the core library with all dependencies into a single C++ source file Easy to compile on0 码力 | 56 页 | 4.97 MB | 1 年前3
谭国富:深度学习在图像审核的应用GP104 GP102 GV100 Tensor Cores NA NA 640 CUDA核数量 3456 3840 5120 处理器制程 - 16nm FinFET 12nm FinFET Core Clock(<=) 1621MHz 1531MHz 1450MHz GPU显存 显存类型 GDDR5X GDDR5 HBM2 显存位宽 384-bit 384-bit 4096-bit0 码力 | 32 页 | 5.17 MB | 1 年前3
共 14 条
- 1
- 2













