Lecture 5: Gaussian Discriminant Analysis, Naive Bayes(conceptual or physical) random experiment Event A is a subset of the sample space S P(A) is the probability that event A happens It is a function that maps the event A onto the interval [0, 1]. P(A) is also also called the probability measure of A Kolmogorov axioms Non-negativity: p(A) ≥ 0 for each event A P(S) = 1 σ-additivity: For disjoint events {Ai}i such that Ai � Aj = ∅ for ∀i ̸= j P( ∞ � i=1 Ai) Conditional Probability Definition of conditional probability: Fraction of worlds in which event A is true given event B is true P(A | B) = P(A, B) P(B) , P(A, B) = P(A | B)P(B) Corollary: The chain rule0 码力 | 122 页 | 1.35 MB | 1 年前3
Lecture Notes on Gaussian Discriminant Analysis, NaiveP(B) (1) where P(A | B) is the conditional probability of event A given event B happens, P(B | A) is the conditional probability of event B given A is true, and P(A) and P(B) are probability of observing0 码力 | 19 页 | 238.80 KB | 1 年前3
机器学习课程-温州大学-03机器学习-逻辑回归而分类预测结果需要得到[0,1]的概率值。 在二分类模型中,事件的几率odds:事件发生与事件不发生的概率之比为 ? 1−?, 称为事件的发生比(the odds of experiencing an event) 其中?为随机事件发生的概率,?的范围为[0,1]。 取对数得到:log ? 1−?,而log ? 1−? = ?T? = ? 求解得到:? = 1 1+?−?T? = 10 码力 | 23 页 | 1.20 MB | 1 年前3
《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测模块。其主要功能是获取和输出模型相关的 序列化数据,它贯通 TensorBoard 的整个使用流程。 tf.summary 模块的核心部分由一组汇总操作以及 FileWriter、Summary 和 Event 3个类组成。 可视化数据流图 工作流 创建 数据流图 创建 FileWriter 实例 启动 TensorBoard Which one is better? VS ✅0 码力 | 46 页 | 5.71 MB | 1 年前3
TensorFlow on Yarn:深度学习遇上大数据TensorFlow on Yarn设计 TensorFlow作业Tensorboard页面:� TensorFlow on Yarn设计 TensorFlow作业history页面:� Event log上传到了HDFS� 查看历史日志� TensorFlow on Yarn技术细节揭秘 实现Yarn Application的标准流程:� TensorFlow on Yarn技术细节揭秘0 码力 | 32 页 | 4.06 MB | 1 年前3
超大规模深度学习在美团的应用-余建平不重不丢:重复的数据会使模型有偏,数据的缺失 会使模型丢失重要信息 数据有序性:数据乱序会导致样本穿越的现象 • Log Join框架 双流拼接框架,通过组合方式支持多流拼接 基于Event Time的Window机制拼接方式 基于Low Watermark解决流乱序、流延迟等流式常 见问题 流式拼接框架 • Low Watermark机制 定义了流式数据的时钟,不可逆性0 码力 | 41 页 | 5.96 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationand combination operations naturally fit into evolution based architecture search where a crossover event could be implemented through a random tweak to the configuration of a block. In the paper8 titled0 码力 | 33 页 | 2.48 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquessimilar to typical human behavior when making a big decision (a big purchase or an important life event). We discuss with friends and family to decide whether it is a good decision. We rely on their perspectives0 码力 | 56 页 | 18.93 MB | 1 年前3
PyTorch Release NotesMERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL0 码力 | 365 页 | 2.94 MB | 1 年前3
动手学深度学习 v2.0否有瑕疵。检查骰子的唯一方法是多 次投掷并记录结果。对于每个骰子,我们将观察到{1, . . . , 6}中的一个值。对于每个值,一种自然的方法是将 它出现的次数除以投掷的总次数,即此事件(event)概率的估计值。大数定律(law of large numbers)告 诉我们:随着投掷次数的增加,这个估计值会越来越接近真实的潜在概率。让我们用代码试一试! 首先,我们导入必要的软件包。 74 在处理骰子掷出时,我们将集合S = {1, 2, 3, 4, 5, 6} 称为样本空间(sample space)或结果空间(outcome space),其中每个元素都是结果(outcome)。事件(event)是一组给定样本空间的随机结果。例如,“看 到5”({5})和“看到奇数”({1, 3, 5})都是掷出骰子的有效事件。注意,如果一个随机实验的结果在A中,则 事件A已经发生。也就是说,如果投掷出3点,因为30 码力 | 797 页 | 29.45 MB | 1 年前3
共 10 条
- 1













