积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(25)机器学习(25)

语言

全部英语(13)中文(简体)(12)

格式

全部PDF文档 PDF(25)
 
本次搜索耗时 0.053 秒,为您找到相关结果约 25 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture 1: Overview

    - Nov 2015, Research Fellow, National University of Singapore, Singapore. Research Interests: Distributed Algorithms and Systems, Wireless Net- works, Mobile Computing, Internet of Things. Feng Li (SDU) itself Example 2 T: Recognizing hand-written words P: Percentage of words correctly classified E: Database of human-labeled images of handwritten words Feng Li (SDU) Overview September 6, 2023 10 / 57 Categorize email messages as spam or legitimate P: Percentage of email messages correctly classified E: Database of emails, some with human-given labels Example 4 T: Driving on four-lane highways using vision
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 keras tutorial

    neural networks and deep learning models. TensorFlow is very flexible and the primary benefit is distributed computing. CNTK is deep learning framework developed by Microsoft. It uses libraries such as and install it immediately on your system. Keras Installation Steps Keras installation is quite easy. Follow below steps to properly install Keras on your system. Step 1: Create virtual environment Matplotlib  Scipy  Seaborn Hopefully, you have installed all the above libraries on your system. If these libraries are not installed, then use the below command to install one by one. numpy
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    �→below prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer "Content-Type: application/json" - �→d '{ "model": "Qwen/Qwen1.5-7B-Chat", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about chat_response = client.chat.completions.create( model="Qwen/Qwen1.5-7B-Chat", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    Python libraries such as NumPy, SciPy, and Cython. Automatic differentiation is done with a tape-based system at both a functional and neural network layer level. This functionality brings a high level of flexibility explained in Running A Container and specify the registry, repository, and tags. About this task On a system with GPU support for NGC containers, when you run a container, the following occurs: ‣ The Docker documentation. Note: Starting in Docker 19.03, complete the steps below. The method implemented in your system depends on the DGX OS version that you installed (for DGX systems), the NGC Cloud Image that was
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    Compressed Communication for Distributed Deep Learning: Survey and Quantitative Evaluation [ICLR2018]Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training Dense参数,每次 都⽤,快速收敛 � 端云⼀体的协同 推荐技术 [KDD2020] DCAF: A Dynamic Computation Allocation Framework for Online Serving System � 推荐全链路⾃适应 � 统⼀建模,根据请求量削峰填⾕,资源利⽤最⼤化 [ijcai2021] UNBERT: User-News Matching BERT for News Recommendation
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 构建基于富媒体大数据的弹性深度学习计算平台

    id2 场景二 … 用户行 为 用户数 据 推理结 果 推理服务 数据抽样 和整理 样本 训练 模型 模型评估 AVA深度学习平台 Caching IO Distributed System Docker Orchestration Storage HDFS SQL NoSQL Caffe MXNet Tensorflow Data Clean Iterative
    0 码力 | 21 页 | 1.71 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    will be clamped to lie in this range. 2. Let us assume that the values of x will be uniformly distributed in this range. This means that all values of x are equally likely to lie in any part of the range solve the problem of recognizing digits on checks or cheques using a deep learning system. We are targeting this system to run on a low end Android device. The resource limitations are under 50 Kb of model
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    %29.png https://upload.wikimedia.org/wikipedia/commons/1/18/1328102022_Document.png May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons.org/licenses/by-sa/4 https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:OPTICS.svg May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons.org/licenses/by-sa/4 Modified from https://commons.wikimedia.org/wiki/File:Cats_Petunia_and_Mimosa_2004.jpg May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons.org/licenses/by-sa/4
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    Jean Kaddour, austinmw, trebeljahr, tbaums, Cuong V. Nguyen, pavelkomarov, vzlamal, NotAnother‐ System, J‐Arun‐Mani, jancio, eldarkurtic, the‐great‐shazbot, doctorcolossus, gducharme, cclauss, Daniel‐ 毋庸置疑,如果没有数据,那么数据科学毫无用武之地。每个数据集由一个个样本(example, sample)组成, 大多时候,它们遵循独立同分布(independently and identically distributed, i.i.d.)。样本有时也叫做数据点 (data point)或者数据实例(data instance),通常每个样本由一组称为特征(features,或协变量(covariates)) 查询条件的结果进行排序。如今,搜索引擎使用机器学习和用户行为模型来获取网页相关性得分,很多学术 会议也致力于这一主题。 推荐系统 另一类与搜索和排名相关的问题是推荐系统(recommender system),它的目标是向特定用户进行“个性化” 推荐。例如,对于电影推荐,科幻迷和喜剧爱好者的推荐结果页面可能会有很大不同。类似的应用也会出现 在零售产品、音乐和新闻推荐等等。 在某些应用中,客户
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    sharing. However, quantization falls behind in case the data that we are quantizing is not uniformly distributed, i.e. the data is more likely to take values in a certain range than another equally sized range In this scenario, the dequantization error would be large for ranges where the data is densely distributed. Quantization-aware training can mitigate some of the losses by making the network resilient to likelihood of . Can we do better such that we assign more bits to regions where more of our data is distributed, and fewer bits to the sparser regions? Recall that huffman encoding does this by trying to create
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
共 25 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
LectureOverviewkerastutorialAI模型千问qwen中文文档PyTorchReleaseNotes推荐基础特点大规规模大规模深度学习系统设计构建基于媒体数据弹性计算平台EfficientDeepLearningBookEDLChapterCompressionTechniquesQCon北京2018键盘输入键盘输入神经网络神经网神经网络彭博应用李碧野动手v2Advanced
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩