《TensorFlow 2项目进阶实战》6-业务落地篇:实现货架洞察Web应⽤业务落地篇:实现货架洞察 Web 应用 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程 • 串联 AI 流程理论:商品检测与商品识别 • 串联 AI 流程实战:商品检测与商品识别 • 展现 AI 效果理论:使用 OpenCV 可视化识别结果 • 展现 AI 效果实战:使用 OpenCV 可视化识别结果 • 搭建 AI SaaS 理论:Web 框架选型 • 搭建 AI 展现 AI 效果实战:使用 OpenCV 可视化识别结果 “Hello TensorFlow” Try it! 搭建 AI SaaS 理论:Web 框架选型 Python Web 框架 Python Web 框架 - Flask Python Web 框架 - Flask Flask 常用扩展 Flask 项目常见目录结构 启动文件 manage.py 示例 搭建 AI SaaS 理论:数据库0 码力 | 54 页 | 6.30 MB | 1 年前3
AI大模型千问 qwen 中文文档install vllm 运行以下代码以构建 vllm 服务。此处我们以 Qwen1.5-7B-Chat 为例: python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat 然后,您可以使用 create chat interface 来与 Qwen 进行交流: curl http://localhos 包中的 Python 客户端: from openai import OpenAI # Set OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( (续下页) Modelfile 完成后,你即可运行你的 ollama 模型: ollama run qwen7b 1.6 Text Generation Web UI Text Generation Web UI(简称 TGW,通常被称为“oobabooga”)是一款流行的文本生成 Web 界面工具,类似 于 AUTOMATIC1111/stable-diffusion-webui 。它拥有多个交互界面,并支持多种模型后端,包括0 码力 | 56 页 | 835.78 KB | 1 年前3
PyTorch Release Notesunderstand improve performance of their models with visualization by using the DLProf Viewer in a web browser or by analyzing text reports. DL Prof is available on NGC or through a Python PIP wheel installation understand improve performance of their models with visualization by using the DLProf Viewer in a web browser or by analyzing text reports. DL Prof is available on NGC or through a Python PIP wheel installation understand improve performance of their models with visualization by using the DLProf Viewer in a web browser or by analyzing text reports. DL Prof is available on NGC or through a Python PIP wheel installation0 码力 | 365 页 | 2.94 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112# 清零测量器 8.7 可视化 在网络训练的过程中,通过 Web 端远程监控网络的训练进度,可视化网络的训练结 果,对于提高开发效率和实现远程监控是非常重要的。TensorFlow 提供了一个专门的可视 化工具,叫做 TensorBoard,它通过 TensorFlow 将监控数据写入到文件系统,并利用 Web 后端监控对应的文件目录,从而可以允许用户从远程查看网络的监控数据。 在运行程序时,监控数据被写入到指定文件目录中。如果要实时远程查看、可视化这 些数据,还需要借助于浏览器和 Web 后端。首先是打开 Web 后端,通过在 cmd 终端运行 tensorboard --logdir path 指定 Web 后端监控的文件目录 path,即可打开 Web 后端监控进 程,如图 8.2 所示: 图 8.2 启动 Web 服务器 此时打开浏览器,并输入网址 http://localhost:6006 # 清零测量器 8.7 可视化 在网络训练的过程中,通过 Web 端远程监控网络的训练进度,可视化网络的训练结 果,对于提高开发效率和实现远程监控是非常重要的。TensorFlow 提供了一个专门的可视 化工具,叫做 TensorBoard,它通过 TensorFlow 将监控数据写入到文件系统,并利用 Web 后端监控对应的文件目录,从而可以允许用户从远程查看网络的监控数据。0 码力 | 439 页 | 29.91 MB | 1 年前3
阿里云上深度学习建模实践-程孟力标准化模型库 标准化解决方案 1.方案复杂 图像 搜索 推荐 语音 视频理解 NLP 广告 CNN RNN GNN MLP Tensorflow PyTorch Parameter Server MPI TreeModel SQL MapReduce Blink 场景丰富: 图像/视频/推荐/搜索 大数据+大模型: Model Zoo 跨场景+跨模态 开箱即用: NLP解决方案: EAS Web App Mobile App On-prem System 3 1 2 证件扫描 活体检测 人脸比对 • 卡证OCR • 人脸检测 • 活体检测 •人脸比对 Mobile SDK API + customer 示例: e-Know Your Customer eKYC eKYC Server eKYC SDK/API 0 码力 | 40 页 | 8.51 MB | 1 年前3
TensorFlow on Yarn:深度学习遇上大数据作业训练结束自动回收work、ps和Tensorboard进程� • 训练效果和性能没有损失� 基本目标:� TensorFlow on Yarn设计 • 支持GPU亲和性调度(提⾼通信效率)� • Web的⽅式查看作业的运⾏状况和作业日志� • 在线查看Tensorboard� • HistoryServer支持查看结束作业的日志和状态信息� • 控制已有的TensorFlow作业的迁移成本(最多改三⾏ SparkFlow:360系统部⼤数据团队设计的TensorFlow on Spark解决⽅案� • Coordinator负责协调生成ClusterSpec(扩展的TensorFlow gRPC server) • Worker通过读取RDD获取训练样本 • RDD的数据cache到内存或者磁盘供多次迭代训练使用 SparkFlow介绍 SparkFlow与TensorFlow on Yarn对比:�0 码力 | 32 页 | 4.06 MB | 1 年前3
动手学深度学习 v2.0Gaurav Saha, Murat Semerci, Lei Mao, Zhu Yuanxiang, thebesttv, Quanshangze Du, Yanbo Chen。 我们感谢Amazon Web Services,特别是Swami Sivasubramanian、Peter DeSantis、Adam Selipsky和Andrew Jassy对撰写本书的慷慨支持。如果没有可用的时间、资 需先将当前路径定位到刚下载的本书代码解压后的目录): jupyter notebook 9 https://developer.nvidia.com/cuda‐downloads 10 目录 现在可以在Web浏览器中打开http://localhost:8888(通常会自动打开)。由此,我们可以运行这本书中每个 部分的代码。在运行书籍代码、更新深度学习框架或d2l软件包之前,请始终执行conda activate 16 目录 1 引言 时至今日,人们常用的计算机程序几乎都是软件开发人员从零编写的。比如,现在开发人员要编写一个程序 来管理网上商城。经过思考,开发人员可能提出如下一个解决方案:首先,用户通过Web浏览器(或移动应 用程序)与应用程序进行交互;紧接着,应用程序与数据库引擎进行交互,以保存交易历史记录并跟踪每个 用户的动态;其中,这个应用程序的核心——“业务逻辑”,详细说明了应用程序在各种情况下进行的操作。0 码力 | 797 页 | 29.45 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波serving server server server worker Model Serving System Serving PS Traing PS Traing Model System Predict Score Sample Data worker worker worker 3 在线机器学习-参数服务器 serving serving serving server server server server server server worker worker worker PSscheduler PSserver PSserver PSserver PSagent PSagent zookeeper PSproxy PSproxy PSsubmit File System checkpoint Model Training System Model Status set/get Model delete Model Save Model Load HA Fault tolerance checkpoint Local HDFS Param Server System Model Serving System 3 在线机器学习-参数服务器 • 参数规模 • 支持百亿特征维度,千亿参数 • 模型版本 • 多模型多版本:多组实验并行执行,提高实验迭代效率0 码力 | 36 页 | 16.69 MB | 1 年前3
搜狗深度学习技术在广告推荐领域的应用查询特征 广告特征 匹配特征 线性模型 非线性模型 Data Feature Model 线上Server CTR预估 Rank Online 特征抽取 CTR预估涉及技术 CTR预估 数据 模型 平台 MPI XgBoost Parameter Server 线性(LR) 非线性(GBDT) 深度(DNN) 实时(FTRL) 特征 训练数据 融合模型 Feature Maker One Case ALL One Hot 特征 Final CTR Bidding Server OFFLINE ONLINE OneHot Float LR Model DNN Model Retriever Server CTR Table DNN Model Feature LR Model Feature 特 征 池0 码力 | 22 页 | 1.60 MB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱内存成为主要资源瓶颈。由于需要等待全部参数 就绪,Parameter Server难以利⽤速度慢的存储 介质 样本读取 样本解析 参数拉 取 训练 参数更新 查询Sparse Table 查询Dense Tensor Reader Learner Worker 返回参数 Request Handler Parameter Server 查询Sparse Table 查询Dense Tensor 参数更新 查询Sparse Table 查询Dense Tensor Reader Learner Worker 返回参数 Request Handler Parameter Server 更新参数 � 异步参数处理流⽔线 参数 预准备 Batch⼊队列 Batch⼊队列 � 效果: � 在不影响训练效果的情况下,降低参数准备与更新耗时,提 ⾼训练速度。训练耗时下降超50%0 码力 | 22 页 | 6.76 MB | 1 年前3
共 27 条
- 1
- 2
- 3













