积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(26)机器学习(26)

语言

全部中文(简体)(14)英语(12)

格式

全部PDF文档 PDF(26)
 
本次搜索耗时 0.038 秒,为您找到相关结果约 26 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    models posed deployment challenges. What good is a model that cannot be deployed in practical applications! Efficient Architectures aim to improve model deployability by proposing novel ways to reduce epochs. However, we should discuss a couple of follow-up topics around how to scale them to NLP applications and beyond. My embedding table is huge! Help me! While embedding tables help in dimensionality the hashing trick. It helps to reduce the vocabulary with little or no performance trade-off. The core idea of the hashing trick is as follows: 1. Choose the desired vocabulary size N, and the number
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    frame/sec with 640x480 resolution 处处可部署 Beyond BlindTool by Joseph Paul Cohen, demo on Nexus 4 Fit the core library with all dependencies into a single C++ source file Easy to compile on language Mobile Hub Custom Connector 2: Invoke a SaaS application or an existing business application Business Application Firewall User Input 应用案例: Capital One “A highly scalable solution, it
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 keras tutorial

    learning, Keras models, Keras layers, Keras modules and finally conclude with some real-time applications. Audience This tutorial is prepared for professionals who are aspiring to make a career ............................................................................................ 18 Core Modules ......................................................................................... ............................................................................ 83 15. Keras ― Applications .............................................................................................
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    state of deep learning, its applications, and rapid growth. We will establish our motivation behind seeking efficiency in deep learning models. We will also introduce core areas of efficiency techniques deep learning models. Introduction to Deep Learning Machine learning is being used in countless applications today. It is a natural fit in domains where there might not be a single algorithm that works perfectly Unlike traditional algorithm problems where we expect exact optimal answers, machine learning applications can often tolerate approximate responses, since often there are no exact answers. Machine learning
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    keras_tuner as kt import numpy as np from matplotlib import pyplot as plt from tensorflow.keras import applications as apps from tensorflow.keras import layers, optimizers train_ds, val_ds, test_ds = tfds.load( dropout_rate=DROPOUT_RATE): # Initalize the core model core_args = dict(input_shape=(IMG_SIZE, IMG_SIZE, 3), include_top=False) core = apps.resnet50.ResNet50(**core_args) core.trainable = False # Setup the top Lambda(lambda x: tf.cast(x, tf.float32)), layers.Lambda(lambda x: apps.resnet.preprocess_input(x)), core, layers.Flatten(), layers.Dropout(dropout_rate), layers.Dense(NUM_CLASSES, activation='softmax')
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    import applications as apps from tensorflow.keras import layers, optimizers, metrics DROPOUT_RATE = 0.2 LEARNING_RATE = 0.0002 NUM_CLASSES = 102 def create_model(): # Initialize the core model core_args core_args = dict(input_shape=(IMG_SIZE, IMG_SIZE, 3), include_top=False) core = apps.resnet50.ResNet50(**core_args) core.trainable = False # Create the full model with input, preprocessing, core and Lambda(lambda x: tf.cast(x, tf.float32)), layers.Lambda(lambda x: apps.resnet.preprocess_input(x)), core, layers.Flatten(), layers.Dropout(DROPOUT_RATE), layers.Dense(NUM_CLASSES, activation='softmax')
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》8-TensorFlow社区参与指南

    ��-Kubeflow ���� AI ���� Business Requirement Production Design Data Processing Model Training Model Visualization Model Serving Production Verification Business Success ���� ����� ����
    0 码力 | 46 页 | 38.88 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    cuBLAS 12.1.3.1 ‣ NVIDIA cuDNN 8.9.3 ‣ NVIDIA NCCL 2.18.3 ‣ NVIDIA RAPIDS™ 23.06 ‣ Apex ‣ rdma-core 39.0 ‣ NVIDIA HPC-X 2.15 ‣ OpenMPI 4.1.4+ ‣ GDRCopy 2.3 ‣ TensorBoard 2.9.0 ‣ Nsight Compute For more information about AMP, see the Training With Mixed Precision Guide. Tensor Core Examples The tensor core examples provided in GitHub and NGC focus on achieving the best performance and convergence cuBLAS 12.1.3.1 ‣ NVIDIA cuDNN 8.9.2 ‣ NVIDIA NCCL 2.18.1 ‣ NVIDIA RAPIDS™ 23.04 ‣ Apex ‣ rdma-core 39.0 ‣ NVIDIA HPC-X 2.15 ‣ OpenMPI 4.1.4+ ‣ GDRCopy 2.3 ‣ TensorBoard 2.9.0 ‣ Nsight Compute
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    SACC2017 深度学习 - 更深更复杂的网络带来效果提升,计算量提升 An Analysis of Deep Neural Network Models for Practical Applications https://arxiv.org/abs/1605.07678 SACC2017 深度学习 -更多数据带来效果质的提升 数据越多,效果越好 论文链接: Revisiting Unreasonable GP104 GP102 GV100 Tensor Cores NA NA 640 CUDA核数量 3456 3840 5120 处理器制程 - 16nm FinFET 12nm FinFET Core Clock(<=) 1621MHz 1531MHz 1450MHz GPU显存 显存类型 GDDR5X GDDR5 HBM2 显存位宽 384-bit 384-bit 4096-bit
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    Boston 房价回归数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 13 预训练模型 Applications 158 13.1 可用的模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 它们可以使用 keras.applications 模块进行导入: from keras.applications.xception import Xception from keras.applications.vgg16 import VGG16 from keras.applications.vgg19 import VGG19 from keras.applications.resnet50 resnet50 import ResNet50 from keras.applications.inception_v3 import InceptionV3 from keras.applications.inception_resnet_v2 import InceptionResNetV2 from keras.applications.mobilenet import MobileNet model
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
共 26 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitectures亚马亚马逊AWSAIServicesOverviewkerastutorialIntroductionAutomationTechniquesTensorFlow快速入门实战社区参与指南PyTorchReleaseNotes国富深度学习图像审核应用Keras基于Python
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩