《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures
models posed deployment challenges. What good is a model that cannot be deployed in practical applications! Efficient Architectures aim to improve model deployability by proposing novel ways to reduce epochs. However, we should discuss a couple of follow-up topics around how to scale them to NLP applications and beyond. My embedding table is huge! Help me! While embedding tables help in dimensionality the hashing trick. It helps to reduce the vocabulary with little or no performance trade-off. The core idea of the hashing trick is as follows: 1. Choose the desired vocabulary size N, and the number0 码力 | 53 页 | 3.92 MB | 1 年前3亚马逊AWSAI Services Overview
frame/sec with 640x480 resolution 处处可部署 Beyond BlindTool by Joseph Paul Cohen, demo on Nexus 4 Fit the core library with all dependencies into a single C++ source file Easy to compile on language Mobile Hub Custom Connector 2: Invoke a SaaS application or an existing business application Business Application Firewall User Input 应用案例: Capital One “A highly scalable solution, it0 码力 | 56 页 | 4.97 MB | 1 年前3keras tutorial
learning, Keras models, Keras layers, Keras modules and finally conclude with some real-time applications. Audience This tutorial is prepared for professionals who are aspiring to make a career ............................................................................................ 18 Core Modules ......................................................................................... ............................................................................ 83 15. Keras ― Applications .............................................................................................0 码力 | 98 页 | 1.57 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction
state of deep learning, its applications, and rapid growth. We will establish our motivation behind seeking efficiency in deep learning models. We will also introduce core areas of efficiency techniques deep learning models. Introduction to Deep Learning Machine learning is being used in countless applications today. It is a natural fit in domains where there might not be a single algorithm that works perfectly Unlike traditional algorithm problems where we expect exact optimal answers, machine learning applications can often tolerate approximate responses, since often there are no exact answers. Machine learning0 码力 | 21 页 | 3.17 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation
keras_tuner as kt import numpy as np from matplotlib import pyplot as plt from tensorflow.keras import applications as apps from tensorflow.keras import layers, optimizers train_ds, val_ds, test_ds = tfds.load( dropout_rate=DROPOUT_RATE): # Initalize the core model core_args = dict(input_shape=(IMG_SIZE, IMG_SIZE, 3), include_top=False) core = apps.resnet50.ResNet50(**core_args) core.trainable = False # Setup the top Lambda(lambda x: tf.cast(x, tf.float32)), layers.Lambda(lambda x: apps.resnet.preprocess_input(x)), core, layers.Flatten(), layers.Dropout(dropout_rate), layers.Dense(NUM_CLASSES, activation='softmax')0 码力 | 33 页 | 2.48 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques
import applications as apps from tensorflow.keras import layers, optimizers, metrics DROPOUT_RATE = 0.2 LEARNING_RATE = 0.0002 NUM_CLASSES = 102 def create_model(): # Initialize the core model core_args core_args = dict(input_shape=(IMG_SIZE, IMG_SIZE, 3), include_top=False) core = apps.resnet50.ResNet50(**core_args) core.trainable = False # Create the full model with input, preprocessing, core and Lambda(lambda x: tf.cast(x, tf.float32)), layers.Lambda(lambda x: apps.resnet.preprocess_input(x)), core, layers.Flatten(), layers.Dropout(DROPOUT_RATE), layers.Dense(NUM_CLASSES, activation='softmax')0 码力 | 56 页 | 18.93 MB | 1 年前3《TensorFlow 快速入门与实战》8-TensorFlow社区参与指南
��-Kubeflow ���� AI ���� Business Requirement Production Design Data Processing Model Training Model Visualization Model Serving Production Verification Business Success ���� ����� ����0 码力 | 46 页 | 38.88 MB | 1 年前3PyTorch Release Notes
cuBLAS 12.1.3.1 ‣ NVIDIA cuDNN 8.9.3 ‣ NVIDIA NCCL 2.18.3 ‣ NVIDIA RAPIDS™ 23.06 ‣ Apex ‣ rdma-core 39.0 ‣ NVIDIA HPC-X 2.15 ‣ OpenMPI 4.1.4+ ‣ GDRCopy 2.3 ‣ TensorBoard 2.9.0 ‣ Nsight Compute For more information about AMP, see the Training With Mixed Precision Guide. Tensor Core Examples The tensor core examples provided in GitHub and NGC focus on achieving the best performance and convergence cuBLAS 12.1.3.1 ‣ NVIDIA cuDNN 8.9.2 ‣ NVIDIA NCCL 2.18.1 ‣ NVIDIA RAPIDS™ 23.04 ‣ Apex ‣ rdma-core 39.0 ‣ NVIDIA HPC-X 2.15 ‣ OpenMPI 4.1.4+ ‣ GDRCopy 2.3 ‣ TensorBoard 2.9.0 ‣ Nsight Compute0 码力 | 365 页 | 2.94 MB | 1 年前3谭国富:深度学习在图像审核的应用
SACC2017 深度学习 - 更深更复杂的网络带来效果提升,计算量提升 An Analysis of Deep Neural Network Models for Practical Applications https://arxiv.org/abs/1605.07678 SACC2017 深度学习 -更多数据带来效果质的提升 数据越多,效果越好 论文链接: Revisiting Unreasonable GP104 GP102 GV100 Tensor Cores NA NA 640 CUDA核数量 3456 3840 5120 处理器制程 - 16nm FinFET 12nm FinFET Core Clock(<=) 1621MHz 1531MHz 1450MHz GPU显存 显存类型 GDDR5X GDDR5 HBM2 显存位宽 384-bit 384-bit 4096-bit0 码力 | 32 页 | 5.17 MB | 1 年前3Keras: 基于 Python 的深度学习库
Boston 房价回归数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 13 预训练模型 Applications 158 13.1 可用的模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 它们可以使用 keras.applications 模块进行导入: from keras.applications.xception import Xception from keras.applications.vgg16 import VGG16 from keras.applications.vgg19 import VGG19 from keras.applications.resnet50 resnet50 import ResNet50 from keras.applications.inception_v3 import InceptionV3 from keras.applications.inception_resnet_v2 import InceptionResNetV2 from keras.applications.mobilenet import MobileNet model0 码力 | 257 页 | 1.19 MB | 1 年前3
共 26 条
- 1
- 2
- 3