动手学深度学习 v2.0商品ID关联起来。虽然一次编写出完美应用程序的可能性微乎其微,但在大多数情况下,开发人员可以从上 述的业务逻辑出发,编写出符合业务逻辑的应用程序,并不断测试直到满足用户的需求。根据业务逻辑设计 自动化系统,驱动正常运行的产品和系统,是一个人类认知上的非凡壮举。 幸运的是,对日益壮大的机器学习科学家群体来说,实现很多任务的自动化并不再屈从于人类所能考虑到的 逻辑。想象一下,假如开发人员要试图解决以下问题之一: 割作业自动化。工业革命的这一阶段可能对 社会的大部分地区产生深远的影响,因为卡车司机和店员是许多国家最常见的工作之一。此外,如果不加注 意地应用统计模型,可能会导致种族、性别或年龄偏见,如果自动驱动相应的决策,则会引起对程序公平性 的合理关注。重要的是要确保小心使用这些算法。就我们今天所知,这比恶意超级智能毁灭人类的风险更令 人担忧。 36 1. 引言 1.7 特点 到目前为止,本节 Intelligence:A Modern Approach (Russell and Norvig, 2016) 中所说的: 虽然飞机可能受到鸟类的启发,但几个世纪以来,鸟类学并不是航空创新的主要驱动力。同样地,如今在深 度学习中的灵感同样或更多地来自数学、统计学和计算机科学。 小结 • 机器学习模型中的关键要素是训练数据、损失函数、优化算法,还有模型本身。 • 矢量化使数学表达上更简洁,同时运行的更快。0 码力 | 797 页 | 29.45 MB | 1 年前3
QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒人脸识别大幅提高精度,商汤科 技首次突破人类肉眼识别准确率 ,领先于Facebook Google5000万美元招入 Hinton,发布基于深度学习的 搜索引擎 Microsoft 深度学习驱动的语音 识别大幅提升精度 软银孙正义设立1000亿美元人 工智能基金,320亿美元收购芯 片架构公司ARM 2016.7 公司简介 历史业绩 领先技术 20年 科研经验 800余位 Kubernetes版本发布快,新特性更新频繁,对异构调度的支持不断加强;但配套设施落后(e.g. Spark on K8s, GitlabCI) • 容器系统调用栈深,需要仔细验证操作系统,内核及异构设备驱动的兼容性 • Kubernetes对NUMA、异构计算、存储设备的调度能力待加强 1.6 nvidia/gpu custom scheduler 1.8 local-volume 1.100 码力 | 23 页 | 9.26 MB | 1 年前3
亚马逊AWSAI Services Overview一键获得的GPU 加速的深度学习 AWS 深度学习AMI 高达 ~40k CUDA cores MXNet TensorFlow Theano Caffe Torch 预配置的 CUDA 驱动 Anaconda, Python3 + CloudFormation 模版 + 容器镜像文件 全新的 EC2 P2 实例 | 高达16 块 GPUs ▪ 这款新实例类型包含了高达 8个 NVIDIA0 码力 | 56 页 | 4.97 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112亿次的浮点运算数 (GFLOPS)的指标变换曲线。可以看到,x86 CPU 的曲线变化相对缓慢,而 NVIDIA GPU 的浮点计算能力指数式增长,这主要是由日益增长的游戏计算量和深度学习计算量等业务 驱动的。 预览版202112 1.3 深度学习特点 9 图 1.12 NVIDIA GPU FLOPS 趋势(数据来自 NVIDIA) 1.3.3 网络规模 早期的感知机模型和多层神经网络层数只有 Integration”一项;在“Driver 预览版202112 1.6 开发环境安装 19 components”节点下,比对目前计算机已经安装的显卡驱动“Display Driver”的版本号 “Current Version”和 CUDA 自带的显卡驱动版本号“New Version”,如果“Current Version”大于“New Version”,则需要取消“Display Driver”的勾,如果小于或等于,则0 码力 | 439 页 | 29.91 MB | 1 年前3
共 4 条
- 1













