积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(39)机器学习(39)

语言

全部英语(26)中文(简体)(13)

格式

全部PDF文档 PDF(39)
 
本次搜索耗时 0.069 秒,为您找到相关结果约 39 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    is: why are we talking about them in the same breadth as efficiency? To answer this question, let’s break down the two prominent ways to benchmark the model in the training phase namely sample efficiency to be more sample efficient, if it achieves similar or better performance with fewer data samples when compared to the baseline. Think of it as teaching a child to recognize common household objects such home-automation device which detects three spoken words: hello weather and time. The output is none when none of the three acceptable words are detected. Now, let’s say that the performance threshold for
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    is a temporary workaround for the issue that there␣ �→are problems with # loading the checkpoint when using LoRA with DeepSpeed. # Check this issue https://github.com/huggingface/peft/issues/746 for more␣ enumerate(indices[0]): if i == -1 or 0 < self.score_threshold < scores[0][j]: # This happens when not enough docs are returned. continue _id = self.index_to_docstore_id[i] doc = self.docstore.search(_id) if not self metadata["score"] = int(scores[0][j]) docs.append(doc) continue id_set.add(i) docs_len = len(doc.page_content) for k in range(1, max(i, store_len - i)): break_flag = False for l in [i + k, i - k]: if 0 <= l
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    Self-Supervised Learning The vanilla supervised learning paradigm that we are familiar has two limitations when it comes to training a model for a new task: 1. Data Efficiency: It relies heavily on labeled data of examples, saving training time compute too. A Typical Self-Supervised Learning Recipe We can break-down common self-supervised learning into two broad steps: 1. Pre-training: This step teaches the helps the models converge faster, attain similar or better quality for the same amount of labeled data when compared to training from scratch, etc. ULMFiT (Howard et al.4) pioneered the idea of training a
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    is transmitted along with the encoded data. Figure 2-1: Huffman Encoding & Huffman Tree. Source When decoding the encoded data, we look up the code from the lookup table to retrieve the symbols back (in fact, they are prefix codes: no code is a prefix of some other code, which eliminates ambiguity when decoding), we can easily construct the original sequence of symbols from the encoded sequence and learning models. What do we really mean by compressing though? As mentioned in chapter 1, we can break down the metrics we care about into two categories: footprint metrics such as model size, prediction
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    registry, repository, and tags. About this task On a system with GPU support for NGC containers, when you run a container, the following occurs: ‣ The Docker engine loads the image into a container which might see a large performance regression on V100 when the workload is using close to all available device memory due to an unexpected memory thrashing when `torch.backends.cudnn.benchmark = True` is used inference and 17% training performance drop for NCF. ‣ Potential out-of-memory issues in Tacotron2 when modules are scripted in amp. Disable autocast in TorchScript by using `torch._C._jit_set_autocast_mode(False)`
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    ze相等。 batch_size = 10 for X, y in data_iter(batch_size, features, labels): print(X, '\n', y) break tensor([[ 0.3934, 2.5705], [ 0.5849, -0.7124], [ 0.1008, 0.6947], [-0.4493, -0.9037], [ 2.3104 num_workers=get_dataloader_workers()) 我们看一下读取训练数据所需的时间。 timer = d2l.Timer() for X, y in train_iter: continue f'{timer.stop():.2f} sec' '3.37 sec' 3.5. 图像分类数据集 113 3.5.3 整合所有组件 现在我们定义load_data_fashion load_data_fashion_mnist(32, resize=64) for X, y in train_iter: print(X.shape, X.dtype, y.shape, y.dtype) break torch.Size([32, 1, 64, 64]) torch.float32 torch.Size([32]) torch.int64 我们现在已经准备好使用Fashion‐MNIST
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    }括起来,在其他语言中也称为map,使用键-值( key-value)存储,具有极快的查找速度,其中key不能重复。 56 Python控制流 ⚫顺序结构 ⚫分支结构 ⚫循环结构 ⚫break、continue和pass ⚫列表生成式 57 Python函数 ⚫调用函数 调用内置函数 ⚫定义函数 def 函数名(): 函数内容 ⚫高阶函数
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    }括起来,在其他语言中也称为map,使用键-值( key-value)存储,具有极快的查找速度,其中key不能重复。 57 Python控制流 ⚫顺序结构 ⚫分支结构 ⚫循环结构 ⚫break、continue和pass ⚫列表生成式 58 Python函数 ⚫调用函数 调用内置函数 ⚫定义函数 def 函数名(): 函数内容 ⚫高阶函数
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    minimal performance deterioration. A random removal could work for removing a few weights. However, when pruning a large number of weights, say 60%, we risk the removal of key weights. Hence, a more measured and 3 input channels. At 1-D granularity, a vector of weights is pruned. An entire kernel is pruned when the pruning is performed at 2-D granularity. We prune an entire channel for 3-D pruning. Figure 5-4 chapter four, we trained a model to predict masks for pets to build snapchat like filters. Let’s continue on the same project to demonstrate how we can create a pruned network without significant drop in
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    memory_reserved(0) # 获取已分配显存 a = torch.cuda.memory_allocated(0) # 获取目前保留显存中的未分配显存 f = r-a # free inside reserved print('total:', t/1024/1024, 'reserv:', r/1024/1024, 'alloc:', a/1024/1024) 在 Batch shape) # 打印 label 张量,及前 5 个样本的 label print('y:', batch.label.shape, batch.label[:5]) break Out[11]: x: torch.Size([80, 30]) y: torch.Size([30]) tensor([0., 1., 1., 0., 0.], device='cuda:0') score += r # 累积奖励 if done: # 当前 episode 终止 break # episode 终止后,训练一次网络 pi.train_net(tape) del tape 模型的训练过程如图
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 39 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniquesAI模型千问qwen中文文档AdvancedTechnicalReviewCompressionPyTorchReleaseNotes动手深度学习v2机器课程温州大学01引言深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩