积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(17)机器学习(17)

语言

全部英语(10)中文(简体)(7)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.060 秒,为您找到相关结果约 17 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017). On the other hand, a DSC block (figure 4-21) performs two step convolution. In the first step, the input is convolved with m (dk define a get_conv_builder() function that chooses between a regular convolution block and a depthwise convolution block. LEARNING_RATE = 0.001 N_CLASSES = 3 layer_id = -1 def get_layer_id(): global get_regular_conv_block(filters, strides): return tf.keras.Sequential( [ layers.Conv2D(filters, 3, padding='same', strides=strides), layers.BatchNormalization(), layers.ReLU(), ], name='regular_conv_block_' +
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    structure into the process of pruning. One way to do this is through pruning blocks of weights together (block sparsity). The blocks could be 1-D, 2-D or 3-D, and so on. Let’s start with a simple example of a neuron in the first layer to the neurons in the second layer as shown in figure 5-3. Figure 5-3: 1-D block pruning between two dense layers. The network on the right is the pruned version of the network on blocks. Our model achieved an accuracy of 85.11%. Here, we will prune the convolution blocks from block two (zero indexed) onwards. We will leave the deconvolution blocks untouched. We define a create_model_for_pruning()
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    download(name, cache_dir=os.path.join('..', 'data')): #@save """下载一个DATA_HUB中的文件,返回本地文件名""" assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}" url, sha1_hash = DATA_HUB[name] os.makedirs(cache_dir, exist_ok=True) exist_ok=True) fname = os.path.join(cache_dir, url.split('/')[-1]) if os.path.exists(fname): sha1 = hashlib.sha1() with open(fname, 'rb') as f: while True: data = f.read(1048576) if not data: break 提供 越来越粗糙的抽象。就像半导体设计师从指定晶体管到逻辑电路再到编写代码一样,神经网络研究人员已经 从考虑单个人工神经元的行为转变为从层的角度构思网络,通常在设计架构时考虑的是更粗糙的块(block)。 之前我们已经介绍了一些基本的机器学习概念,并慢慢介绍了功能齐全的深度学习模型。在上一章中,我们 从零开始实现了多层感知机的每个组件,然后展示了如何利用高级API轻松地实现相同的模型。为了易于学
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    = VGG19(weights='imagenet') model = Model(inputs=base_model.input, outputs=base_model.get_layer('block4_pool').output) img_path = 'elephant.jpg' img = image.load_img(img_path, target_size=(224, 224)) img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) 预训练模型 APPLICATIONS 160 block4_pool_features = model.predict(x) 13.2.4 在新类上微调 InceptionV3 from keras.applications.inception_v3 : for i, layer in enumerate(base_model.layers): print(i, layer.name) # 我们选择训练最上面的两个 Inception block # 也就是说锁住前面 249 层,然后放开之后的层。 for layer in model.layers[:249]: layer.trainable = False for layer
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    label train_ds = train_ds.map(dsitem_to_tuple).map(resize_image).cache() val_ds = val_ds.map(dsitem_to_tuple).map(resize_image).cache() print(train_ds.as_numpy_iterator().next()[0].shape) print(val_ds further regularization. dropout_rate = params.get('dropout_rate', 1.0) # We will keep the first 'block' of layers scale invariant. x = layers.Conv1D( 32, (9), padding='same', activation='relu', kern
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    [%(name)s] %(message)s", level=logging.INFO,␣ �→datefmt="%Y-%m-%d %H:%M:%S" ) model.quantize(data, cache_examples_on_gpu=False) 最后,保存量化模型: model.save_quantized(quant_path, use_safetensors=True) tokenizer 此外,vLLM 支持将 AWQ 或 GPTQ 模型与 KV 缓存量化相结合,即 FP8 E5M2 KV Cache 方案。例如: llm = LLM(model="Qwen/Qwen1.5-7B-Chat-GPTQ-Int8", quantization="gptq", kv_cache_dtype= �→"fp8_e5m2") python -m vllm.entrypoints.openai openai.api_server \ --model Qwen/Qwen1.5-7B-Chat-GPTQ-Int8 \ --quantization gptq \ --kv-cache-dtype fp8_e5m2 1.10.6 常见问题 您可能会遇到令人烦恼的 OOM(内存溢出)问题。我们推荐您尝试两个参数进行修复。第一个参数是 --max-model-len 。我们提供的默认最大位置嵌入(m
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    transferable architectures for scalable image recognition. NASNet cells are composed of blocks. A single block corresponds to two hidden inputs, two primitive operations for the hidden states, and a combination operation as shown in figure 7-8 (left). NASNet predicts these five inputs and operations for every block. Each cell contains such blocks. Hence, for each cell, NASNet predicts parameters. Since we predict paper, the value for is chosen to be 5. Figure 7-8 (right) shows a predicted block. Figure 7-8: The structure of a block used to compose normal and reduction cells. The image on the left shows the timesteps
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 李东亮:云端图像技术的深度学习模型与应用

    视觉感知模型 分割 Forward Block Forward Block deconvolution deconvolution convolution convolution 检测 Forward Block Forward Block convolution convolution 识别 Forward Block Forward Block SACC2017 视觉感知模型-融合 Forward Block Forward Block deconvolution deconvolution convolution convolution 检测 Forward Block Forward Block convolution convolution 识别 Forward Block Forward Block Forward Block Forward Forward Block deconvolution deconvolution 分割 convolution convolution 检测 识别 Single Frame Predictor SACC2017 视觉感知模型-融合 检测 识别 分割 跟踪 核 心 深度学习 •完全基于深度学习 •统一分类,检测,分割,跟踪 ü通过共享计算提高算法效率 ü通过多个相关任务共同学习提高算法性能
    0 码力 | 26 页 | 3.69 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    paper. It is based on the regular ResNet model, which substitutes 3x3 convolutions in the bottleneck block for 3x3 grouped convolutions. This model script is available on GitHub. ‣ SE-ResNext model: This paper. It is based on the regular ResNet model, which substitutes 3x3 convolutions in the bottleneck block for 3x3 grouped convolutions. This model script is available on GitHub. ‣ SE-ResNext model: This paper. It is based on the regular ResNet model, which substitutes 3x3 convolutions in the bottleneck block for 3x3 grouped convolutions. This model script is available on GitHub. ‣ SE-ResNext model: This
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    illustration). Let the output of the -th residual block be denoted by . For the -th residual block, we start with the input from the previous residual block, . This input is branched into two, in one branch through a non-linearity (ReLU). Figure 6-16: A residual block in ResNet. Formally, it is computed as follows: . Note how in the residual block, the output of the previous layer ( ) skips the layers further by probabilistically dropping a residual block with a probability . The goal is to keep this probability high (less likelihood of dropping the given block) in the earlier layers, and low for later layers
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesAdvancedCompressionTechniques动手深度学习v2Keras基于PythonAI模型千问qwen中文文档Automation李东亮云端图像技术应用PyTorchReleaseNotesTechnicalReview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩