积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(16)机器学习(16)

语言

全部英语(12)中文(简体)(4)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.029 秒,为您找到相关结果约 16 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    proceeding with the various types of concepts given in this tutorial, we assume that the readers have basic understanding of deep learning framework. In addition to this, it will be very helpful, if the readers ........................................................................................... 26 Basic Concept of Layers ............................................................................... about how to install Keras on your machine. Before moving to installation, let us go through the basic requirements of Keras. Prerequisites You must satisfy the following requirements:  Any kind
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    what we learnt for quantizing deep learning models. Looking Under the Hood As we know, one of the basic neural network operation is as follows: f(X; W, b) = σ(XW + b) Here, X, W and b are tensors (mathematical sounds challenging because the human handwriting varies from person-to-person. However, there is some basic structure in handwritten digits that a neural network should be able to learn. MNIST (Modified NIST) parameters. The fit() method also prints out the training progress per epoch as shown below. def train_basic_model(): model = get_compiled_model() model_history = model.fit( train_x, train_y, batch_size=128
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    following: ‣ Ubuntu 16.04 including Python 3.6 environment ‣ NVIDIA CUDA 10.0.130 including CUDA ® Basic Linear Algebra Subroutines library ™ (cuBLAS) 10.0.130 ‣ NVIDIA CUDA ® Deep Neural Network library following: ‣ Ubuntu 16.04 including Python 3.6 environment ‣ NVIDIA CUDA 10.0.130 including CUDA ® Basic Linear Algebra Subroutines library ™ (cuBLAS) 10.0.130 ‣ NVIDIA CUDA ® Deep Neural Network library following: ‣ Ubuntu 16.04 including Python 3.6 environment ‣ NVIDIA CUDA 10.0.130 including CUDA ® Basic Linear Algebra Subroutines library ™ (cuBLAS) 10.0.130 ‣ NVIDIA CUDA ® Deep Neural Network library
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》5-实战TensorFlow手写体数字识别

    255 0 MNIST 手写体数字介绍 下载和读取 MNIST 数据集 一个曾广泛使用(如 chapter-2/basic-model.ipynb),如今被废弃的(deprecated)方法: 下载和读取 MNIST 数据集 一个曾广泛使用(如 chapter-2/basic-model.ipynb),如今被废弃的(deprecated)方法: tf.contrib.learn 模块已被废弃
    0 码力 | 38 页 | 1.82 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    1 About the Course 2 Machine Learning: What and Why? 3 Categories of Machine Learning 4 Some Basic Concepts of Machine Learning Feng Li (SDU) Overview September 6, 2023 2 / 57 Instructor Prof. Feng Constrained Clustering (Contd.) Feng Li (SDU) Overview September 6, 2023 45 / 57 Active Learning Basic idea: Traditional supervised learning algorithms passively accept training data. Instead, query for
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    must show a child before they can learn to identify them with high accuracy. All cups have the same basic shape. One possible way to teach a child is to look at the same cup from different angles and rotations that involve large text samples, such as text summarization, spam filtering, resume filtering. The basic idea is that shuffling sentences, paragraphs or sections in a text must preserve the original meaning
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 12. 数学运算

    openai.com/generative-models/ ▪ Add/minus/multiply/divide ▪ Matmul ▪ Pow ▪ Sqrt/rsqrt ▪ Round basic matmul ▪ Torch.mm ▪ only for 2d ▪ Torch.matmul ▪ @ An example >2d tensor matmul? Power Exp
    0 码力 | 11 页 | 1015.16 KB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 20. 链式法则

    链式法则 主讲人:龙良曲 Derivative Rules Basic Rule ▪ ? + ? ▪ ? − ? Product rule ▪ ?? ′ = ?′? + ??′ ▪ ?4′ = ?2 ∗ ?2 ′ = 2? ∗ ?2 + ?2 ∗ 2? = 4?3 Quotient Rule ▪ ? ? = ?′?+??′ ?2 ▪ e.g. Softmax Chain
    0 码力 | 10 页 | 610.60 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-Scikit-learn

    29 3.Scikit-learn案例 见Jupyter notebook 代码 30 参考文献 1. https://scikit-learn.org/stable/tutorial/basic/tutorial.html ,scikit-learn (sklearn) 官方文档 2. https://sklearn.apachecn.org/ ,scikit-learn (sklearn)
    0 码力 | 31 页 | 1.18 MB | 1 年前
    3
  • pdf文档 Lecture 7: K-Means

    clustering can handle non-convex Feng Li (SDU) K-Means December 28, 2021 26 / 46 Kernel K-Means Basic idea: Replace the Euclidean distance/similarity computations in K-means by the kernelized versions
    0 码力 | 46 页 | 9.78 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
kerastutorialEfficientDeepLearningBookEDLChapterCompressionTechniquesPyTorchReleaseNotesTensorFlow快速入门实战手写手写体数字识别LectureOverview深度学习12数学运算20链式法则链式法则机器课程温州大学ScikitlearnMeans
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩