积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(105)机器学习(105)

语言

全部中文(简体)(77)英语(28)

格式

全部PDF文档 PDF(105)
 
本次搜索耗时 0.069 秒,为您找到相关结果约 105 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Experiment 2: Logistic Regression and Newton's Method

    Experiment 2: Logistic Regression and Newton’s Method August 29, 2018 1 Description In this exercise, you will use Newton’s Method to implement logistic regression on a classification problem. 2 Data college and 40 students who were not admitted. Each (x(i), y(i)) training example contains a student’s score on two standardized exams and a label of whether the student was admitted. Your task is to build build a binary classification model that estimates college admission chances based on a student’s scores on two exams. In your training data, the first column of your x array represents all Test 1 scores
    0 码力 | 4 页 | 196.41 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    defined by ωT x + b = 0 (1) where ω ∈ Rn is the outward pointing normal vector, and b is the bias term. The n-dimensional space is separated into two half-spaces H+ = {x ∈ Rn | ωT x + b ≥ 0} and H− = {x ωT x + b < 0} by the hyperplane, such that we can classify a given point x0 ∈ Rn according to sign(ωT x + b). Specifically, given a point x0 ∈ Rn, its label y is defined as y0 = sign(ωT x0 + b), i.e. y0 = � 1, ωT x0 + b ≥ 0 −1, otherwise (2) Given any x0 ∈ Rn, we can calculate the signed distance from x to the hyperplane as d0 = ωT x0 + b ∥ω∥ = � ω ∥ω∥ �T x0 + b ∥ω∥ (3) The sign of the distance
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    delay, or resource availability (extra hands needed for chopping). Personally, I like full apples. Let’s move on from apples to the digital domain. A popular example of lossless data compression algorithm decompress it on arrival? If so, what would be the ideal tradeoff on how much compression we want v/s how much quality loss can we tolerate? Let us slowly build up to that by exploring how quantization low transmission bandwidth. Figure 2-3: Quantization of sine waves. Let’s dig deeper into its mechanics using an example. Let’s assume we have a variable x which takes a 32-bit floating point value in
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    hyperplane passes through origin. If not, have a bias term b; we will then need both ω and b to define it b > 0 means moving it parallely along ω (b < 0 means in opposite direction) Feng Li (SDU) SVM December hyperplane based linear classifier defined by ω and b Prediction rule: y = sign(ωTx + b) Given: Training data {(x(i), y(i))}i=1,··· ,m Goal: Learn ω and b that achieve the maximum margin For now, assume data are correctly classified by (ω, b) Zero loss on the training examples (non-zero loss later) Feng Li (SDU) SVM December 28, 2021 4 / 82 Margin Hyperplane: ωTx + b = 0, where ω is the normal vector
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    此外,在附录中,我们提供了本书所涵盖的大多数数学知识的复习。大多数时候,我们会优先考虑直觉和想 法,而不是数学的严谨性。有许多很棒的书可以引导感兴趣的读者走得更远。Bela Bollobas的《线性分析》 (Bollobás, 1999) 对线性代数和函数分析进行了深入的研究。(Wasserman, 2013) 是一本很好的统计学指南。 如果读者以前没有使用过Python语言,那么可以仔细阅读这个Python教程3。 Pedro Larroy, lgov, ati‐ozgur, Jun Wu, Matthias Blume, Lin Yuan, geogunow, Josh Gardner, Maximilian Böther, Rakib Islam, Leonard Lausen, Abhinav Upadhyay, rongruosong, Steve Sedlmeyer, Ruslan Bara‐ tov Miniconda3-py39_4.12.0-MacOSX-x86_64.sh -b 如果我们使用Linux,假设Python版本是3.9(我们的测试版本),将下载名称包含字符串“Linux”的bash脚 本,并执行以下操作: # 文件名可能会更改 sh Miniconda3-py39_4.12.0-Linux-x86_64.sh -b 接下来,初始化终端Shell,以便我们可以直接运行conda。
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    R510), 515.65 (or later R515), 525.85 (or later R525), or 530.30 (or later R530). The CUDA driver's compatibility package only supports particular drivers. Thus, users should upgrade from all R418, R440 following key features and enhancements. ‣ PyTorch container image version 23.07 is based on 2.1.0a0+b5021ba. Announcements ‣ Starting with the 23.06 release, the NVIDIA Optimized Deep Learning Framework the Frameworks Support Matrix. Container Version Ubuntu CUDA Toolkit PyTorch TensorRT 23.07 2.1.0a0+b5021ba 23.06 2.1.0a0+4136153 TensorRT 8.6.1.6 23.05 22.04 NVIDIA CUDA 12.1.1 2.0.0 TensorRT 8.6
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    Events and Probability A sample space S is the set of all possible outcomes of a (conceptual or physical) random experiment Event A is a subset of the sample space S P(A) is the probability that event A called the probability measure of A Kolmogorov axioms Non-negativity: p(A) ≥ 0 for each event A P(S) = 1 σ-additivity: For disjoint events {Ai}i such that Ai � Aj = ∅ for ∀i ̸= j P( ∞ � i=1 Ai) = 122 Sample Space, Events and Probability (Contd.) Some consequences P(∅) = 0 P(A � B) = P(A) + P(B) − P(A � B) P(A¬) = 1 − P(A) Feng Li (SDU) GDA, NB and EM September 27, 2023 5 / 122 Conditional
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    understanding, tool use, role play, playing as AI agent, etc. 最新版本 Qwen1.5 有以下特点: • 6 种模型规模,包括 0.5B、1.8B、4B、7B、14B 和 72B; • 针对每种尺寸提供基础模型和 Chat 模型,并确保聊天模型按照人类偏好进行校准; • 对基础模型和 Chat 模型的多语言支持 • 基础模型和聊天模型都支持多种语言; transformers 进行推理。请确保已安装了 transformers>=4. 37.0 版本。以下是一个非常简单的代码片段示例,展示如何运行 Qwen1.5-Chat 模型,其中包含 Qwen1. 5-7B-Chat 的实例: from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-7B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat") # Instead of using model.chat(), we directly
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》7-实战TensorFlow人脸识别

    6000 �����h�����vh�i 300 �u��300 ���� ���ha��c��d����t���LFW���s�d�����p� 2013�:�����������f�������l��+�c��� 2014�:����������c��� 2014��s��c��+���.����tw����/e������������� ������������� • ������.V �����������---����������������-� YouTube Faces DB ������� ����� T���e�l���������l����Y�����a�h�o b��i���������l�����������o ���lfT��37�7,.�c�o � ������������lo������l�����������������l����� ������o ��12�:832/�96/��.5� CASIA-WebFace ������������� mke������F������g�������r��AF���� �b���mkeC������C��b���������S���i������W� cn���mke��l�h�����������K��mkeC������w ����cntp_�������f�d�as�������I_cn�����
    0 码力 | 81 页 | 12.64 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    _p_k2_=9e74eb6f891d47cfaa6f00b5cb 5f617c https://study.163.com/course/courseMain.h tm?share=2&shareId=480000001847407& courseId=1208894818&_trace_c_p_k2_=8 d1b10e04bd34d69855bb71da65b0549 预览版202112 a_ph = tf.placeholder(tf.float32, name='variable_a') b_ph = tf.placeholder(tf.float32, name='variable_b') # 创建输出端子的运算操作,并命名 c_op = tf.add(a_ph, b_ph, name='variable_c') 创建计算图的过程就类比通过符号建立公式? = ? + 运行初始化操作,完成初始化 # 运行输出端子,需要给输入端子赋值 c_numpy = sess.run(c_op, feed_dict={a_ph: 2., b_ph: 4.}) # 运算完输出端子才能得到数值类型的 c_numpy print('a+b=',c_numpy) 可以看到,在 TensorFlow 中完成简单的2.0 + 4.0加法运算尚且如此繁琐,更别说创建复杂 的神经网络算法有
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 105 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 11
前往
页
相关搜索词
ExperimentLogisticRegressionandNewtonMethodLectureNotesonSupportVectorMachineEfficientDeepLearningBookEDLChapterCompressionTechniques动手深度学习v2PyTorchReleaseGaussianDiscriminantAnalysisNaiveBayesAI模型千问qwen中文文档TensorFlow快速入门实战人脸识别人脸识别深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩