积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(17)机器学习(17)

语言

全部英语(11)中文(简体)(6)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.030 秒,为您找到相关结果约 17 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    ..................................................................... 7 3. Keras ― Backend Configuration ............................................................................................. install using the below command: pip install TensorFlow Once we execute keras, we could see the configuration file is located at your home directory inside and go to .keras/keras.json. keras.json { folder name and add the above configuration inside keras.json file. We can perform some pre-defined operations to know backend functions. 3. Keras ― Backend Configuration Keras 10
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    errors. This approach is also called Configuration Selection because we are aiming to find optimal hyperparameter values. BOS is likely to reach the optimum configuration faster than Grid and Random searches configurations and adaptively allocates more resources to the promising ones. This is called Configuration Evaluation. Let's discuss it in detail in the next section. Figure 7-3: (a) Bayesian Optimization errors. (b) This plot shows the validation error as a function of resources allocated to each configuration. Promising configurations get more resources. Source: Hyperband2 2 Li, Lisha, et al. "Hyperband:
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    not forward- compatible with CUDA 12.1. For a complete list of supported drivers, see the CUDA Application Compatibility topic. For more information, see CUDA Compatibility and Upgrades. GPU Requirements not forward- compatible with CUDA 12.1. For a complete list of supported drivers, see the CUDA Application Compatibility topic. For more information, see CUDA Compatibility and Upgrades. GPU Requirements not forward- compatible with CUDA 12.1. For a complete list of supported drivers, see the CUDA Application Compatibility topic. For more information, see CUDA Compatibility and Upgrades. GPU Requirements
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    chat interface 来与 Qwen 进行交流: curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" - �→d '{ "model": "Qwen/Qwen1.5-7B-Chat", "messages": [ {"role": "system", "content": "You --model Qwen/Qwen1.5-7B-Chat-AWQ curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" - �→d '{ "model": "Qwen/Qwen1.5-7B-Chat-AWQ", "messages": [ {"role": "system", "content": Qwen/Qwen1.5-7B-Chat-GPTQ-Int8 curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" - �→d '{ "model": "Qwen/Qwen1.5-7B-Chat-GPTQ-Int8", "messages": [ {"role": "system", "content":
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-08深度学习-深度卷积神经网络

    Max-Pool Conv3-32 Conv3-128 Conv3-64 Conv3-64 Max-Pool Max-Pool FC-512 Output ConvNet Configuration Stacked layers Previous input x F(x) y=F(x) Stacked layers Previous input x F(x) y=F(x)+x
    0 码力 | 32 页 | 2.42 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    natural language Mobile Hub Custom Connector 2: Invoke a SaaS application or an existing business application Business Application Firewall User Input 应用案例: Capital One “A highly scalable solution
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    edge devices. Let’s say you want to design a mobile application to highlight pets in a picture. A DSC model is a perfect choice for such an application because it has a smaller footprint than a regular convolution segmentation mask over an object in the input sample. This model will be used within a mobile application. Mobile devices are resource constrained. Let’s see if we can reduce the model footprint without model to produce a mask over a pet in an image. This model will be deployed with a pet filter application for mobile devices which would let you replace one pet with another. We will show you the first
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    model_content earlier. The converter object also supports weight and activation quantizations using configuration parameters. We are almost there. We have worked out the steps to create and train a model, load
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    downstream application (which is very reasonable), we only need to achieve that saving across 100 applications before it becomes profitable to pre-train BERT-Base rather than train each application from scratch
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    org/abs/1911.09723v1 3 https://github.com/google/XNNPACK Project: Lightweight model for pet filters application Recall that our regular CNN model in the pet filters project consisted of thirteen convolution can actually see latency benefits, apart from the size benefits we demonstrated. Another useful application for clustering (or any other compression technique for which there isn’t native support) is embedding
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
kerastutorialEfficientDeepLearningBookEDLChapterAutomationPyTorchReleaseNotesAI模型千问qwen中文文档机器学习课程温州大学08深度卷积神经网络神经网神经网络亚马亚马逊AWSAIServicesOverviewArchitecturesCompressionTechniquesAdvancedTechnicalReview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩