Keras: 基于 Python 的深度学习库49 4.3.1 Model 类 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.2 Model 的实用属性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.3 Model 类模型方法 . . . . . . . . . . . . . . . 239 20.8 plot_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 20.9 multi_gpu_model . . . . . . . . . . . . . . . . . . . . . . Keras 的核心数据结构是 model,一种组织网络层的方式。最简单的模型是 Sequential 顺 序模型,它是由多个网络层线性堆叠的栈。对于更复杂的结构,你应该使用 Keras 函数式 API, 它允许构建任意的神经网络图。 Sequential 顺序模型如下所示: from keras.models import Sequential model = Sequential()0 码力 | 257 页 | 1.19 MB | 1 年前3
Lecture Notes on Linear RegressionGeometrically, when n = 1, h✓(x) is actually a line in a 2D plane, while h✓(x) represents a plane in a 3D space when n = 2. Generally, when n � 3, h✓(x) defines a so-called “hyperplane” in a higher dimensional y(i)⌘2 1 Figure 1: 3D linear regression. Specifically, we aim at minimizing J(✓) over ✓. We give an illustration in Fig. 1 to explain linear regression in 3D space (i.e., n = 2). In the 3D space, the hypothesis ↵@J(✓) @✓j (4) The update is terminated when convergence is achieved. In our linear regression model, the gradient can be calculated as @J(✓) @✓j = @ @✓j 1 2 m X i=1 (✓T x(i) � y(i))2 = m X0 码力 | 6 页 | 455.98 KB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112参考文献 第 15 章 自定义数据集 15.1 精灵宝可梦数据集 15.2 自定义数据集加载流程 15.3 宝可梦数据集实战 15.4 迁移学习 15.5 Saved_model 15.6 模型部署 15.7 参考文献 预览版202112 人工智能绪论 我们需要的是一台可以从经验中学习的机器。 −阿兰·图灵 1.1 1.15 目标检测效果图 图 1.16 语义分割效果图 视频理解(Video Understanding) 随着深度学习在 2D 图片的相关任务上取得较好的效 果,具有时间维度信息的 3D 视频理解任务受到越来越多的关注。常见的视频理解任务有 视频分类、行为检测、视频主体抽取等。常用的模型有 C3D、TSN、DOVF、TS_LSTM 等。 图片生成(Image Generation) 容器可以非常方便地搭建多层的网络。对于 3 层网络,我们可以通过快速 完成 3 层网络的搭建。 # 利用 Sequential 容器封装 3 个网络层,前网络层的输出默认作为下一层的输入 model = nn.Sequential( # 创建第一层,输入为 784,输出为 256 nn.Linear(28*28, 256), nn.ReLU(), # 激活函数0 码力 | 439 页 | 29.91 MB | 1 年前3
Lecture 1: Overviewinformation Predict the age of a viewer watching a given video on YouTube Predict the location in 3D space of a robot arm end effector, given control signals (torques) sent to its various motors Predict (SDU) Overview September 6, 2023 47 / 57 Parametric vs Non-Parametric Models Parametric model We can train a model by using the training data to estimate parameters of it Use these parameters to make predictions Overview September 6, 2023 48 / 57 Parametric vs Non-Parametric Models (Contd.) Non-parametric model: nearest-neighbor method Make predictions for test data based on a subset of training cases, e.g0 码力 | 57 页 | 2.41 MB | 1 年前3
Experiment 1: Linear Regressionavailable for Linux from Octave-Forge ). 2 Linear Regression Recall that the linear regression model is hθ(x) = θT x = n � j=0 θjxj, (1) where θ is the parameter which we need to optimize and x is dataset. There are m = 50 training examples, and you will use them to develop a linear regression model using gradient descent algorithm, based on which, we can predict the height given a new age value plotting your results later. We implement linear regression for this problem. The linear regression model in this case is hθ(x) = θT x = 1 � i=0 θixi = θ1x1 + θ2, (4) (1) Implement gradient descent using0 码力 | 7 页 | 428.11 KB | 1 年前3
亚马逊AWSAI Services Overview为什么选择 MXNet ? MXNet: 可扩展的深度学习框架 MXNet 框架的特点 命令式 NDArray API 声明式 Symbolic Executor MXNet: 博采众家之长 3D Image Construction https://github.com/piiswrong/deep3d 100行Python代码 在 TX1 无人机上运行 TX1 with customized Understanding Book Flight London Utterances Flight booking London Heathrow Intent / Slot model London Heathrow Origin Destination Departure Date Flight Booking “Book a flight to London” Understanding Book Flight London Utterances Flight booking London Heathrow Intent / Slot model London Heathrow Location Location Seattle Origin Destination Departure Date Flight Booking0 码力 | 56 页 | 4.97 MB | 1 年前3
阿里云上深度学习建模实践-程孟力样本分布不均匀 ✗ 隐私保护 • 多个环节 • 多种模型 ✗ 海量参数 ✗ 海量数据 从FM到DeepFM rt 增 加了10倍怎么优化? 2.模型效果优 化困难 1.方案复杂 Data Model Compute Platform 要求: 准确: 低噪声 全面: 同分布 模型选型: 容量大 计算量小 训练推理: 高qps, 低rt 支持超大模型 性价比 Tensorflow PyTorch Parameter Server MPI TreeModel SQL MapReduce Blink 场景丰富: 图像/视频/推荐/搜索 大数据+大模型: Model Zoo 跨场景+跨模态 开箱即用: 封装复杂性 白盒化, 可扩展性强 积极对接开源系统+模型 FTRL SGD Adam Solutions Librarys 优势: Graph-Learn: 分布式图算法库 标准化: Standard Solutions Continuous Optimization: Active learning Data Label Model Serving CV / NLP解决方案: EAS Web App Mobile App On-prem System 3 1 2 证件扫描 活体检测 人脸比对 •0 码力 | 40 页 | 8.51 MB | 1 年前3
PyTorch OpenVINO 开发实战系列教程第一篇现对整个计算图参数的评估优化。但是到底什么是张量?可以 看下面这张图: 图 1-3(张量表示) PyTorch + OpenVINO 开发实战系列教程 第一篇 5 上图 1-3 中标量、向量、数组、3D、4D、5D 数据矩阵在深 度学习框架中都被称为张量。可见在深度学习框架中所有的数 据都是张量形式存在,张量是深度学习数据组织与存在一种数 据类型。 ● 算子 / 操作数 深度学习主要是 input_dim = 1 output_dim = 1 model = LinearRegressionModel(input_dim, output_dim) criterion = torch.nn.MSELoss() learning_rate = 0.01 optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) from_numpy(y) # Clear gradients w.r.t. parameters optimizer.zero_grad() # Forward to get output outputs = model(inputs) # Calculate Loss loss = criterion(outputs, labels) # Getting gradients w.r.t. parameters0 码力 | 13 页 | 5.99 MB | 1 年前3
keras tutorial........................................................................................... 17 Model ................................................................................................. ............................................................................... 58 10. Keras ― Model Compilation ..................................................................................... ..... 61 Compile the model ........................................................................................................................................ 62 Model Training ..............0 码力 | 98 页 | 1.57 MB | 1 年前3
PyTorch Release Notes--shm-size=in the command line to docker run --gpus all To pull data and model descriptions from locations outside the container for use by PyTorch or save results to locations and 2X reduced memory storage for intermediates (reducing the overall memory consumption of your model). Additionally, GEMMs and convolutions with FP16 inputs can run on Tensor Cores, which provide an NVIDIA Volta™ tensor cores by using the latest deep learning example networks and model scripts for training. Each example model trains with mixed precision Tensor Cores on NVIDIA Volta and NVIDIA Turing™, 0 码力 | 365 页 | 2.94 MB | 1 年前3
共 64 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7













