积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(56)机器学习(56)

语言

全部中文(简体)(55)英语(1)

格式

全部PDF文档 PDF(56)
 
本次搜索耗时 0.049 秒,为您找到相关结果约 56 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-06深度学习-优化算法

    1 2023年04月 深度学习-优化算法 黄海广 副教授 2 01 小批量梯度下降 本章目录 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 3 01 小批量梯度下降 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 1.小批量梯度下降 4 小批量梯度下降 小批量梯度下降(Mini-Batch (?) ?? (?) (同步更新?? ,(j=0,1,...,n )) 5 小批量梯度下降 6 01 小批量梯度下降 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 2.优化算法 7 伦敦温度的例子 days temperature ?1 = 40°F ?2 = 49°F ?3 = 45°F ... ?180 = 60°F (1 − ?)??, ?: = ? − ????, ?: = ? − ????, 这样就可以减缓梯度下降的 幅度。 通常情况下:? = 0.9 11 RMSprop 在第?次迭代中,该算法会照常计算当下mini-batch的微分??,??,所以我会 保留这个指数加权平均数,我们用到新符号??? ,而不是??? ,因此??? = ???? + (1 − ?)??2,澄清一下,这个平方的操作是针对这一整个符号的,这样做
    0 码力 | 31 页 | 2.03 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-06机器学习-KNN算法

    1 2021年04月 机器学习-KNN算法 黄海广 副教授 2 01 距离度量 02 KNN算法 本章目录 03 KD树划分 04 KD树搜索 3 01 距离度量 02 KNN算法 03 KD树划分 04 KD树搜索 1.距离度量 4 距离度量 欧氏距离(Euclidean distance) ? ?, ? = ෍ =1 ? ( ??)2 10 01 距离度量 02 KNN算法 03 KD树划分 04 KD树搜索 2.KNN算法 11 2.KNN算法 ?近邻法(k-Nearest Neighbor,kNN)是一种比较成熟也是最简单的机器学习算 法,可以用于基本的分类与回归方法。 算法的主要思路: 如果一个样本在特征空间中与?个实例最为相似(即特征空间中最邻近),那么这 对于回归问题:对新的样本,根据其?个最近邻的训练样本标签值的均值作为预 测值。 12 2.KNN算法 ?近邻法(k-Nearest Neighbor,kNN)是一种比较成熟也是 最简单的机器学习算法,可以用于基本的分类与回归方法。 ?近邻法的三要素: • ?值选择。 • 距离度量。 • 决策规则。 13 2.KNN算法 算法流程如下: 1.计算测试对象到训练集中每个对象的距离 2.按照距离的远近排序
    0 码力 | 26 页 | 1.60 MB | 1 年前
    3
  • pdf文档 房源质量打分中深度学习应用及算法优化-周玉驰

    2019 KE.COM ALL COPYRIGHTS RESERVED 1 周玉驰 贝壳找房 - 数据智能中心 - 策略算法部 AI选房中深度学习的实践及优化 2019 KE.COM ALL COPYRIGHTS RESERVED 2 2019 KE.COM ALL COPYRIGHTS RESERVED 2 2019 KE.COM ALL COPYRIGHTS RESERVED 3 自我介绍 周玉驰  硕士毕业于中科院  先后就职于华为,百度和医渡云  目前就职于贝壳找房  主要负责两个方向  房源策略算法  房客人关系图谱 扫一扫二维码图案,加我微信 2019 KE.COM ALL COPYRIGHTS RESERVED 4 目录  为什么要做AI选房  如何做AI选房  模型演变历程  实践应用  总结&思考 2019
    0 码力 | 48 页 | 3.75 MB | 1 年前
    3
  • pdf文档 经典算法与人工智能在外卖物流调度中的应用

    经典算法与深度学习 在外卖物流调度中的应用 SPEAKER / 徐明泉 百度外卖首席架构师 引言:外卖配送的背后 2 引言:外卖订单调度系统要考虑的因素 3 订单相关 骑士相关 • 商户、用户位置 • 用户期望时间 • 预计出餐时间.. • 现有订单的配送路线 • 新增订单后配送路线的改变情况 • 历史取送餐速度 • 完成每个订单的预计时间 • 熟悉的区域 • 配送工具 调度 系统 1.0 外卖订单智能调度要解决的核心问题 7 调度系统算法 1 2 3 4 5 路线规划 • 动态规划最优配送路线,且合理 并单,以最低的配送成本最大化 满足用户配送体验。 • 考虑用户期望时间的TSP问题 • 构建模型综合评估用户体验与配 送成本打分 • 采用动态规划和模拟退火算法等 算法,求得最优路线 1 8 时间预估 用户下单 开始配送 骑士到店 数据,DNN 更好地学习自身有用的特征 - DNN对特征工程要求较低,自身可以学习有用的特征,PCA降维影响较小,但时间复杂度较高 • XGBoost模型 - 采用近似求解算法,找出可能的分裂点,避免选用贪心算法的过高时间复杂度 - 计算采用不同分裂点时,叶子打分函数的增益;并选择增益最高的分裂点,作为新迭代树的最终分裂 节点,构造新的迭代树 - 通过调节迭代树数目、学习倍率、迭代树
    0 码力 | 28 页 | 6.86 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    张量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.3.5 张量算法的基本性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.3.6 降维 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.7.1 查找模块中的所有函数和类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.7.2 查找特定函数和类的用法 . . . . . . . . . . . . . . . . . . . . . . . . 5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.6 定义优化算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.7 训练 . . . . .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12机器学习-关联规则

    机器学习-第十一章 关联规则 黄海广 副教授 2 本章目录 01 关联规则概述 02 Apriori 算法 03 FP-Growth算法 3 1.关联规则概述 01 关联规则概述 02 Apriori 算法 03 FP-Growth算法 4 1.关联规则概述 关联规则 关联规则(Association Rules)反映一个事物与其他事物之间的相互依存 商品B也被客户挑选的机会就被发现了。 5 1.关联规则概述 有没有发生过这样的事:你出去买东西, 结果却买了比你计划的多得多的东西?这 是一种被称为冲动购买的现象,大型零售 商利用机器学习和Apriori算法,让我们倾 向于购买更多的商品。 6 1.关联规则概述 购物车分析是大型超市用来揭示商品之间关联的关 键技术之一。他们试图找出不同物品和产品之间的 关联,这些物品和产品可以一起销售,这有助于正 ) ? =3/4 9 2.Apriori算法 01 关联规则概述 02 Apriori 算法 03 FP-Growth算法 10 2.Apriori算法 Apriori算法利用频繁项集生成关联规则。它基于频繁项集的子集也 必须是频繁项集的概念。 频繁项集是支持值大于阈值(support)的项集。 Apriori算法就是基于一个先验: 如果某个项集是频繁的,那么它的所有子集也是频繁的。
    0 码力 | 49 页 | 1.41 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    、人工智能学院院长。 代表作:《机器学习》(西瓜书) 7 陈天奇,陈天奇是机器学习领域著名的青 年华人学者之一,本科毕业于上海交通 大学ACM班,博士毕业于华盛顿大学计 算机系。 主要贡献:设计了XGBoost算法。 机器学习界的青年才俊 何恺明,本科就读于清华大学,博士毕业于 香港中文大学多媒体实验室。2016年,加入 Facebook AI Research(FAIR)担任研究科 学家。 主要贡献:设计了ResNets Preferred Networks 深度学习、机器学习技术 物联网 日本 2016年 C轮融资 估值20亿美元 9 机器学习的范围 10 • 给定数据的预测问题 ✓ 数据清洗/特征选择 ✓ 确定算法模型/参数优化 ✓ 结果预测 • 不能解决什么 ✓ 大数据存储/并行计算 ✓ 做一个机器人 机器学习可以解决什么问题 11 机器学习发展史 总的来说,人工智能经历了逻辑推理、知识工程、机器 用于描述和解决智能体(agent)在与环境的交 互过程中通过学习策略以达成回报最大化或实现 特定目标的问题 。 2. 机器学习的类型-强化学习 19 ✓ 机器学习方法 ✓ 模型 ✓ 损失函数 ✓ 优化算法 ✓ 模型评估指标 机器学习的概念 20 机器学习的概念-模型 机器学习首先要考虑使用什么样的模型。 模型的类别,大致有两种:一是概率模型(Probabilistic Model)和非概率模型
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    、人工智能学院院长。 代表作:《机器学习》(西瓜书) 7 陈天奇,陈天奇是机器学习领域著名的青 年华人学者之一,本科毕业于上海交通 大学ACM班,博士毕业于华盛顿大学计 算机系。 主要贡献:设计了XGBoost算法。 人工智能界的青年才俊 何恺明,本科就读于清华大学,博士毕业于 香港中文大学多媒体实验室。2016年,加入 Facebook AI Research(FAIR)担任研究科 学家。 主要贡献:设计了ResNets 不同行业的人以为我做的事情 父母以为我做的事情 程序员以为我做的事情 我自己以为我做的事情 实际上我做的事情 10 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应 用不是拥有最好的 算法,而是拥有最 多的数据! 数据决定一切 数据大小 准 确 率 11 深度学习-CV(计算机视觉方向) 图像获取 提取二维图像 = ?d? + ?d? (3) ( ? ?)′ = ??′−??′ ?2 (? ≠ 0) d( ? ?) = ?d?−?d? ?2 四则运算法则 设函数? = ?(?),? = ?(?)在点?可导,则: 高等数学-四则运算法则 37 设函数?(?)在点?0处的某邻域内具有? + 1阶导数,则对该邻域内异于?0的 任意点?,在?0与?之间至少存在一个?,使得: ?(?)
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    000维度的softmax,因为计算成本很高, 而是把它转变为10,000个二分类问题,每个都很容易计算 ,每次迭代我们要做的只是训练它们其中的5个,一般而言 就是? + 1个,其中?个负样本和1个正样本。这也是为什么 这个算法计算成本更低,因为只需更新? + 1个逻辑单元, ? + 1个二分类问题,相对而言每次迭代的成本比更新 10,000维的softmax分类器成本低。 ? ?? = ? ?? 3 4 σ?=1 相关的负样本。我们来看看我们的第一组: 22 3.Word2Vec 训练流程 现在我们有四个单词:输入单词not和输出/上下文单词:( thou实际邻 居),aaron,和taco(负样本)。我们继续查找它们的嵌入 - 对于输 入词,我们查看Embedding矩阵。对于上下文单词,我们查看Context矩 阵(即使两个矩阵都在我们的词汇表中嵌入了每个单词)。 23 3.Word2Vec 训练流程 01 词汇表征和文本数据处理 28 4.GloVe GloVe代表用词表示的全局变量(global vectors for word representation)。 对于GloVe算法,我们可以定义上下文和目标词为任意两个位置相近的单词,假 设是左右各10词的距离,那么???就是一个能够获取单词?和单词?出现位置相近时 或是彼此接近的频率的计数器。 GloVe模型做的就是进
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    有状态的循环神经网络模型中,在一个 batch 的样本处理完成后,其内部状态(记忆)会被记录 并作为下一个 batch 的样本的初始状态。这允许处理更长的序列,同时保持计算复杂度的可控 性。 你可以在 FAQ 中查找更多关于 stateful RNNs 的信息。 from keras.models import Sequential from keras.layers import LSTM, Dense ValueError: 如果生成器生成的数据格式不正确。 4.3.3.11 get_layer get_layer(self, name=None, index=None) 根据名称(唯一)或索引值查找网络层。 索引值来自于水平图遍历的顺序(自下而上)。 参数 • name: 字符串,层的名字。 • index: 整数,层的索引。 返回 一个层实例。 异常 • ValueError: >= 0. 模糊因子. 若为 None, 默认为 K.epsilon(). • decay: float >= 0. 每次参数更新后学习率衰减值. • amsgrad: boolean. 是否应用此算法的 AMSGrad 变种,来自论文”On the Convergence of Adam and Beyond”. 引用 • Adam - A Method for Stochastic Optimization
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
共 56 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
机器学习课程温州大学06深度优化算法KNN房源质量打分应用周玉驰经典人工智能人工智能外卖物流调度动手v212关联规则01引言自然语言自然语言处理嵌入Keras基于Python
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩