《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务TensorFlow 2 项目实战进阶 扫码试看/订阅 《TensorFlow 2 项目进阶实战》视频课程 快速上手篇:动⼿训练模型和部署服务 • TensorFlow 2 开发环境搭建 • 使用 tf.keras.datasets 加载数据 • 使用 tf.data.Dataset 加载数据 • 使用 tf.keras.Model 管理模型 • Fashion MNIST 数据集介绍0 码力 | 52 页 | 7.99 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112jd.com/12954866.html ❑ 联系邮箱(一般问题建议 Github issues 交流):liangqu.long AT gmail.com ❑ 配套视频课程(收费,提供答疑等全服务,比较适合初学者): 深度学习与 TensorFlow 入门实战 深度学习与 PyTorch 入门实战 https://study.163.com/course/courseMai n.htm 亿个,甚至发布之初一度以技术安全考 虑为由拒绝开源 GPT-2 模型。 聊天机器人(Chatbot) 聊天机器人也是自然语言处理的一项主流任务,机器自动学习与 人类对话,对于人类的简单诉求提供满意的自动回复,提高客户的服务效率和服务质量 等。常应用在咨询系统、娱乐系统、智能家居等中。 预览版202112 第 1 章 人工智能绪论 12 1.4.3 强化学习 虚拟游戏 相对于真实环境,虚拟游戏 10,结果符合预期。这个例子比较好地展示 了 scatter 函数的强大之处。 5.6.6 Meshgrid 网格函数 算法中对特征位置进行编码(Positional Encoding)时,或者可视化 3D 函数时,通常需要 生成一组网格点的坐标张量。在 PyTorch 中,可以通过 torch.meshgrid 函数方便地生成二维 网格的采样点坐标。考虑 2 个自变量 x 和 y 的 Sinc 函数表达式为: ?0 码力 | 439 页 | 29.91 MB | 1 年前3
经典算法与人工智能在外卖物流调度中的应用用户下单 开始配送 骑士到店 骑士取餐 到达用户 完成交付 商户接单 商户出餐 到店时间 出餐时间 送餐时间 交付时间 等餐时间 2 到达识别,交付时间计算 数据积累,异常数据剔除 网格建立,分时段统计 交付时间预估 取餐/送餐分别回归拟合 骑士速度预估 9 时间预估 — 出餐时间预估 10 数据 & 特征工程 • 特征 = 基础特征 + 组合特征 + 统计特征 + 下配送体验,预估在 天气变化、运营活动 订单激增等情况下合 理骑士人数 商圈健康度诊断 综合分析商圈内用户、 商户及骑士,提供线 下运营方案指导 寻宝系统 4 总结—物流系统生态是保证用户良好物流服务体验的基石 22 时光机 | 回顾过去 实时监控 | 监控现在 仿真系统 | 预测未来 寻宝系统 | 指导业务 调度系统 提纲 23 外卖订单的智能 调度系统 一. 智能调度系统的0 码力 | 28 页 | 6.86 MB | 1 年前3
动手学深度学习 v2.0训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 12.7 参数服务器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540 12.7 . . . . . . . . . . . . . . . . . . 758 16.4 选择服务器和GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758 16.4.1 选择服务器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767 Bibliography 769 xv xvi 前言 几年前,在大公司和初创公司中,并没有大量的深度学习科学家开发智能产品和服务。我们中年轻人(作者) 进入这个领域时,机器学习并没有在报纸上获得头条新闻。我们的父母根本不知道什么是机器学习,更不用 说为什么我们可能更喜欢机器学习,而不是从事医学或法律职业。机器学习是一门具有前瞻性的学科,在现0 码力 | 797 页 | 29.45 MB | 1 年前3
机器学习课程-温州大学-Scikit-learnsklearn提供了部分带交叉验证功能的模型 类如LassoCV、LogisticRegressionCV等, 这些类包含cv参数 26 2.Scikit-learn主要用法 交叉验证及超参数调优 超参数调优⸺网格搜索 from sklearn.model_selection import GridSearchCV from sklearn import svm svc = svm.SVC() params GridSearchCV(svc, params, cv=5) grid_search.fit(X_train, y_train) grid_search.best_params_ 在参数网格上进行穷举搜索,方法简单但是搜索速度慢(超参数较多时),且不 容易找到参数空间中的局部最优 27 2.Scikit-learn主要用法 交叉验证及超参数调优 超参数调优⸺随机搜索 from0 码力 | 31 页 | 1.18 MB | 1 年前3
机器学习课程-温州大学-09深度学习-目标检测去除这些重复的框,获得真正的目标框。 如下图所示,人、马、车上有很多框,通 过NMS,得到唯一的检测框。 28 2.目标检测算法 非极大值抑制(Non-max suppression) 首先这个19×19网格上执行一下算法,你会得到19×19×8的输 出尺寸。不过对于这个例子来说,我们简化一下,就说你只做汽车 检测,我们就去掉?1、?2和?3,然后假设这条线对于19×19的每一 个输出,对于3610 码力 | 43 页 | 4.12 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波深度化:深度学习 • 平台化:机器学习平台 2 推荐 • 实时化 • 特征实时化:更及时反馈用户行为,更细粒度刻画用户 • 模型实时化:根据线上样本实时训练模型,及时地反映对象的线上变化 模型推理 预测服务 实时特征 实时数据 3 在线机器学习 实时样本 实时模型训练 实时更新参数 Task 训练预处理 Node 实时样本拼接 Node 在线模型训练 Node 离线样本拼接 Node Serving PS Traing PS Traing Model System Predict Score Sample Data worker worker worker 3 在线机器学习-参数服务器 serving serving serving server server server server server worker worker worker PSscheduler HA Fault tolerance checkpoint Local HDFS Param Server System Model Serving System 3 在线机器学习-参数服务器 • 参数规模 • 支持百亿特征维度,千亿参数 • 模型版本 • 多模型多版本:多组实验并行执行,提高实验迭代效率 • 在线版本切换:基于ZK的版本感知机制,动态进行版本切换,实现BAS0 码力 | 36 页 | 16.69 MB | 1 年前3
AI大模型千问 qwen 中文文档Qwen1.5,我们建议您使用 vLLM。vLLM 是一个用于 LLM 推理和服务的快速且易于使用的框架。以 下,我们将展示如何使用 vLLM 构建一个与 OpenAI API 兼容的 API 服务。 首先,确保你已经安装 vLLM>=0.3.0 : pip install vllm 运行以下代码以构建 vllm 服务。此处我们以 Qwen1.5-7B-Chat 为例: python -m vllm ├── merges.txt │ │ ├── tokenizer_config.json │ │ └── vocab.json 随后你需要运行 python server.py 来启动你的网页服务。请点击进入 `http://localhost:7860/?__theme=dark` 然后享受使用 Qwen 的 Web UI 吧! 1.6.2 下一步 TGW 中包含了许多更多用途,您 、q5_0 、q5_k_m 、q6_k 和 q8_0 。欲了解更多信息,请访问 llama.cpp 。 1.10 vLLM 我们建议您在部署 Qwen 时尝试使用 vLLM 。它易于使用,且具有最先进的服务吞吐量、高效的注意力键值 内存管理(通过 PagedAttention 实现)、连续批处理输入请求、优化的 CUDA 内核等功能。要了解更多关于 vLLM 的信息,请参阅 论文 和 文档 。 1.100 码力 | 56 页 | 835.78 KB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱� 算法维度 �总结 基于深度学习模型的推荐流程,场景与⽬标 Serving系统 HDFS 数据 通道 训练系统 召回 业务服务 排序 混排 模型 管理 上线 管理 ⽆量 RGW/Cos/ kafka 样本 存储 实时样本 ⽣成服务 离线样本 ⽣成任务 数据 通道 特征 处理 模型 登记 模型 上线 预测 请求 数据 落地 ⽆量 ⽤户⾏为数据上报 特征 腾讯系内容推荐:阅⽂集团,QQ⾳乐 � Facebook推荐场景推理成本占AI推理成本的 >72% [ISCA2020 RecNMP] � 千亿级推荐模型应⽤ O1. 千亿级特征(TB级)的模型的在线/离 线训练,在线推理服务和持续上线 O2. 针对推荐特点的深度优化,达到业界先 进⽔平 推荐系统的核⼼特点 � Feature 1(基本特点) 1.1 User与推荐系统交互,7*24⼩时 流式学习 1.2 Item和User新增,离开/遗忘, 算法 1. ⾼性能 2. 效果⽆ 损的优化 � Feature 1(基本特点) � Feature 2(数据的时空 特点) � Feature3(机器学习 的特点) 训练框架—基于参数服务器架构的分布式训练框架 TB级模型 分⽚ 存储/更新 百TB数据 分⽚训练 Feature 1: 动态空间 Feature 2.1:短时间内只有部分item和user 被命中,只有部分参数被⽤到0 码力 | 22 页 | 6.76 MB | 1 年前3
亚马逊AWSAI Services OverviewAI 构建于深度学习之上的智能服务 Amazon AI: 新的深度学习服务 生活化的语音服务 Polly Lex 对话引擎 Rekognition 图像分析 深度学习框架 MXNet, TensorFlow, Theano, Caffe, Torch 为客户模型定制的 深度学习框架 人工智能 的托管的 API服务 Amazon AI: 新的深度学习服务 Polly Lex Rekognition https://35.161.116.218/notebooks/money_predict.ipynb 将文本转化为 生活化语音 47 种语音 24 种语言 低延迟、实时 全托管 Polly: 生活化的语音服务 Voice Quality & Pronunciation 1. 自动化、精准的文本处理 2. 智能化的且易于理解 3. 将语义加入文本当中 4. 定制化的发音 文章、博客 训练材料 Chatbots Salesforce Microsoft Dynamics Marketo Zendesk Quickbooks Hubspot Lex: 构建自然的通过语音和文本的会话交互 不断提升的 人性化交互… • 联系、服务支持中心的接口 (文本 + 语音) • 员工工作效率和协同 (分钟级别到秒级) Origin Destination Departure Date Flight Booking “Book0 码力 | 56 页 | 4.97 MB | 1 年前3
共 31 条
- 1
- 2
- 3
- 4













