积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(74)机器学习(74)

语言

全部中文(简体)(73)英语(1)

格式

全部PDF文档 PDF(74)
 
本次搜索耗时 0.058 秒,为您找到相关结果约 74 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    深度学习 + 大数据 TensorFlow on Yarn 李远策 2017年4月17日 内容大纲 Ø TensorFlow使用现状及痛点� Ø TensorFlow on Yarn设计� Ø TensorFlow on Yarn技术细节揭秘� Ø 深度学习平台演进及SparkFlow介绍� 背景 坐标:360-系统部-⼤数据团队� 专业:Yarn、Spark、MR、HDFS 专业:Yarn、Spark、MR、HDFS …� 挑战:深度学习空前⽕爆,各种深度学习框架层出不穷,业务部门 拥抱新兴技术。平台怎么应对?� 机遇:Maybe 深度学习 + ⼤数据 � � TensorFlow使用现状及痛点 场景(1)� 场景(2)� TensorFlow使用现状及痛点 !.train.ClusterSpec({ “worker”: [ “worker0.example ⼿动拉取训练模型� TensorFlow使用现状及痛点 • 多⼈多服务器使用混乱,计算资源如何划分?� • 没有GPUs集群资源管理和调度(内存、CPU、GPU、 端⼝),集群资源负载不均� • 训练数据⼿动分发,训练模型⼿动保存� • 进程遗留问题,需要⼿动杀死� • 缺乏作业统⼀管理,不便对作业运⾏状态跟踪� • 日志查看不⽅便� � 总结:� TensorFlow使用现状及痛点 •
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 数据增强

    数据增强 主讲人:龙良曲 Big Data ▪ The key to prevent Overfitting Sample more data? Limited Data ▪ Small network capacity ▪ Regularization ▪ Data argumentation Recap Data argumentation ▪ Flip ▪ Rotate
    0 码力 | 18 页 | 1.56 MB | 1 年前
    3
  • pdf文档 构建基于富媒体大数据的弹性深度学习计算平台

    构建基于富媒体大数据的弹性深度学 习计算平台 SPEAKER / 土土@七牛 AtLab Mobile —> 富媒体时代 数据存储 数据加速 数据处理 直播 点播 Connect 每天超过10亿图像上传 超过万亿小时的音视频存储 What are they? 内容审核团队 运营分析团队 AI? Content 分类 检测 分割 跟踪 描述 搜索 分析 … … 连接 智能 人工智能 = 大数据 + 机器学习 Ataraxia AI Lab (AtLab) 色情 0.01 性感 0.98 正常 0.01 特征 id1 戴眼镜 性别:男 年龄:33 场景:户外/景点/雪山 审查: 非色情 非暴力 很健康 颜值: ?? “C罗正在带球突破,后有球员追堵” 场景一 00:00:00-00:01:05 描述:事件1-XXXX 事件2-XXXX 事件2-XXXX 人物出现:id1, id2 场景二 … 用户行 为 用户数 据 推理结 果 推理服务 数据抽样 和整理 样本 训练 模型 模型评估 AVA深度学习平台 Caching IO Distributed System Docker Orchestration Storage HDFS SQL NoSQL Caffe MXNet Tensorflow Data
    0 码力 | 21 页 | 1.71 MB | 1 年前
    3
  • pdf文档 基本数据类型

    基本数据类型 主讲人:龙良曲 All is about Tensor python PyTorch Int IntTensor of size() float FloatTensor of size() Int array IntTensor of size [d1, d2 ,…] Float array FloatTensor of size [d1, d2, …] string
    0 码力 | 16 页 | 1.09 MB | 1 年前
    3
  • pdf文档 迁移学习-自定义数据集实战

    自定义数据集实战 主讲:龙良曲 Pokemon Go! Pokemon Dataset https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/ Download ▪ 链接: https://pan.baidu.com/s/1V_ZJ7ufjUUFZwD2NHSNMFw
    0 码力 | 16 页 | 719.15 KB | 1 年前
    3
  • pdf文档 杨赛赛-基于深度学习的多维时间序列预测在数据机房中的应用

    PYCON CHINA 基于深度学习的多维时间序列 预测在数据机房中的应用 目 录 1 背景介绍 2 研究目标 3 研究内容 4 后续工作 1. 背景介绍 数据机房面临的能耗问题 数据机房面临电量消耗巨大的问题 空调是数据机房中电量消耗最大的设备 空调为什么那么耗电?怎么优化节能? 低效的 冷却装 置 服务主 机工作 发热 影响空 调耗电 量原因 建筑材料 隔热和散 的全面感知 空调对温度的控制 存在延迟 多 维 感 知 温 度 预 测 控 制 2. 研究目标 对数据机房的温度进行预测 ⚫ 根据机房的历史运行数据变化预测未来 XX 分钟机房的温度值,从而实现空调的预测控制。 风机状态 服务负载 天气状况 室外温度 室外湿度 门禁状态 时序数据 温度预测 预测控制 节能调节 3. 研究内容 ⚫ 时间序列预测方法的比较 传统时间序列预测 ⚫ 混合多维时间序列预测 ⚫ 提取多维序列之间更加复杂 的关系 ⚫ 提取维度之间空间依赖关系, 长短期依赖关系 ⚫ 算法有LSTNet,TPA-LSTM 多维时间序列预测方法解决机房温度预测 对数据包含的信息提取能力越来越强 选择 LSTNet 作为温度预测建模算法 ⚫ Convolutional Layer 捕捉时间维度上的短期依赖和维度之间的空间依赖关系 ⚫ Recurrent and
    0 码力 | 17 页 | 2.49 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    Lipton, Mu Li, and Alexander J. Smola Aug 18, 2023 目录 前言 1 安装 9 符号 13 1 引言 17 2 预备知识 39 2.1 数据操作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.1 . . . . . . . . . . . . . . . . . . . 47 2.2 数据预处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2.1 读取数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.2.1 生成数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.2.2 读取数据集 . . . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    参考文献 第 3 章 分类问题 3.1 手写数字图片数据集 3.2 模型构建 3.3 误差计算 3.4 真的解决了吗 3.5 非线性模型 3.6 表达能力 3.7 优化方法 3.8 手写数字图片识别体验 3.9 小结 3.10 参考文献 第 4 章 PyTorch 基础 4.1 数据类型 4.2 数值精度 4.3 待优化张量 4.4 数学运算 4.10 前向传播实战 4.11 参考文献 第 5 章 PyTorch 进阶 5.1 合并与分割 5.2 数据统计 5.3 张量比较 5.4 填充与复制 5.5 数据限幅 5.6 高级操作 5.7 经典数据集加载 5.8 MNIST 测试实战 5.9 参考文献 第 6 章 神经网络 6.1 感知机 6.2 全连接层 6 测量工具 8.7 可视化 8.8 参考文献 第 9 章 过拟合 9.1 模型的容量 9.2 过拟合与欠拟合 9.3 数据集划分 9.4 模型设计 9.5 正则化 9.6 Dropout 9.7 数据增强 9.8 过拟合问题实战 9.9 参考文献 第 10 章 卷积神经网络 10.1 全连接网络的问题 10.2 卷积神经网络
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-07机器学习-决策树

    决策树:从训练数据中学习得出一个树状 结构的模型。 ⚫ 决策树属于判别模型。 ⚫ 决策树是一种树状结构,通过做出一系列 决策(选择)来对数据进行划分,这类似 于针对一系列问题进行选择。 ⚫ 决策树的决策过程就是从根节点开始,测 试待分类项中对应的特征属性,并按照其 值选择输出分支,直到叶子节点,将叶子 节点的存放的类别作为决策结果。 根节点 (root node) 叶节点 (leaf node) 5 1.决策树原理 根节点 (root node) 非叶子节点 (non-leaf node) (代表测试条件,对数据属性的测试) 分支 (branches) (代表测试结果) 叶节点 (leaf node) (代表分类后所获得的分类标记) ⚫ 决策树算法是一种归纳分类算法 ,它通过对训练集的学习,挖掘 出有用的规则,用于对新数据进 行预测。 ⚫ 决策树算法属于监督学习方法。 比较适合处理有缺失属性的样本。 ⚫ 可自动忽略目标变量没有贡献的属性变量,也为判断属性变量的重要性, 减少变量的数目提供参考。 缺点: ⚫ 容易造成过拟合,需要采用剪枝操作。 ⚫ 忽略了数据之间的相关性。 ⚫ 对于各类别样本数量不一致的数据,信息增益会偏向于那些更多数值的特 征。 决策树的特点 7 算法 支持模型 树结构 特征选择 连续值处理 缺失值处理 剪枝 特征属性多次使用 ID3 分类 多叉树 信息增益
    0 码力 | 39 页 | 1.84 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12机器学习-关联规则

    如果某个项集是频繁的,那么它的所有子集也是频繁的。 11 2.Apriori算法 算法流程 输入:数据集合D,支持度阈值? 输出:最大的频繁k项集 1)扫描整个数据集,得到所有出现过的数据,作为候选频繁1项集。k=1,频繁0项集为空集。 2)挖掘频繁k项集 a) 扫描数据计算候选频繁k项集的支持度 b) 去除候选频繁k项集中支持度低于阈值的数据集,得到频繁k项集。如果得到的频繁k项集 为空,则直接返回频繁k-1项 Apriori算法 Apriori算法缺点 Apriori 在计算的过程中有以下几个缺点: 可能产生大量的候选集。因为采用排列组合的方式,把可能的项集都 组合出来了; 每次计算都需要重新扫描数据集,来计算每个项集的支持度。 25 3.FP-Growth算法 01 关联规则概述 02 Apriori 算法 03 FP-Growth算法 26 3.FP-Growth算法 00年提出的关联分析算法,它采 取如下分治策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-Tree), 但仍保留项集关联信息。 该算法是对Apriori方法的改进。生成一个频繁模式而不需要生成候选模式。 FP-growth算法以树的形式表示数据库,称为频繁模式树或FP-tree。 此树结构将保持项集之间的关联。数据库使用一个频繁项进行分段。这个片段被称 为“模式片段”。分析了这
    0 码力 | 49 页 | 1.41 MB | 1 年前
    3
共 74 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 8
前往
页
相关搜索词
TensorFlowonYarn深度学习遇上数据PyTorch入门实战44增强构建基于媒体弹性计算平台06基本类型数据类型63迁移定义定义数据13杨赛赛多维时间序列预测数据机房中应用动手v2深度学习机器课程温州大学07决策决策树12关联规则
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩