积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(17)机器学习(17)

语言

全部中文(简体)(17)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.035 秒,为您找到相关结果约 17 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测

    (运行环境) 训练模型 数据分析库:Pandas Pandas 是一个 BSD 开源协议许可的,面向 Python 用户的高性能和易于上手的数 据结构化和数据分析工具。 数据框(Data Frame)是一个二维带标记的数据结构,每列(column)数据类型 可以不同。我们可以将其当作电子表格或数据库表。 数据读入 pandas.read_csv 方法实现了快速读取 CSV(comma-separated) 方法专门用于线性关系的可视化,适用于回归模型。 数据分析(3D) Axes3D.scatter3D 方法专门用于绘制3维的散点图。 数据归一化(3D) 数据处理:NumPy NumPy 是一个 BSD 开源协议许可的,面向 Python 用户的基础科学计算库,在多 维数组上实现了线性代数、傅立叶变换和其他丰富的函数运算。 X y 创建线性回归模型(数据流图) 创建会话(运行环境) 使用 TensorBoard
    0 码力 | 46 页 | 5.71 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    函 数、常用网络层、网络训练、模型保存与加载、模型部署等一系列深度学习系统的便捷功 能。常用网络层主要放置在 nn 子模块中,优化器主要放置在 optim 子模块中,模型部署主 要通过 ONNX 协议实现。使用 PyTorch 开发,可以方便地利用这些功能完成常用算法业务 流程,高效稳定灵活。 1.6 开发环境安装 在领略完深度学习框架所带来的便利后,现在来着手在本地计算机环境上安装 keras 有什么区别与联系呢?其实 Keras 可以理解为一套搭建与训练神经网 络的高层 API 协议,Keras 本身已经实现了此协议,安装标准的 Keras 库就可以方便地调用 TensorFlow、CNTK 等后端完成加速计算;在 TensorFlow 中,也实现了一套 Keras 协议, 即 tf.keras,它与 TensorFlow 深度融合,且只能基于 TensorFlow 后端运算,并对 曲线的?坐标,因此不宜重复。每类数据通过字符串名字来区分,同类的数据需要写入相 同名字的数据库中。例如: with summary_writer.as_default(): # 写入环境 # 当前时间戳 step 上的数据为 loss,写入到名为 train-loss 数据库中 tf.summary.scalar('train-loss'
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12机器学习-关联规则

    0年提出的关联分析算法,它采 取如下分治策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-Tree), 但仍保留项集关联信息。 该算法是对Apriori方法的改进。生成一个频繁模式而不需要生成候选模式。 FP-growth算法以树的形式表示数据库,称为频繁模式树或FP-tree。 此树结构将保持项集之间的关联。数据库使用一个频繁项进行分段。这个片段被称 为“模式片段”。分析了这些 FP-growth算法只需要对数据库进行两次扫描,而Apriori算法在求每个潜在 的频繁项集时都需要扫描一次数据集,所以说Apriori算法是高效的。其中 算法发现频繁项集的过程是: (1)构建FP树; (2)从FP树中挖掘频繁项集。 28 3.FP-Growth算法 FP-growth算法思想 该算法和Apriori算法最大的不同有两点: 第一,不产生候选集 第二,只需要两次遍历数据库,大大提高了效率。 第二,只需要两次遍历数据库,大大提高了效率。 29 3.FP-Growth算法 FP-Tree ( Frequent Pattern Tree ) FP树(FP-Tree)是由数据库的初始项集组成的树状结构。 FP树的目的是挖掘最 频繁的模式。FP树的每个节点表示项集的一个项。 根节点表示null,而较低的节点表示项集。在形成树的同时,保持节点与较 低节点(即项集与其他项集)的关联。 30 3.FP-Growth算法
    0 码力 | 49 页 | 1.41 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-10深度学习-人脸识别与风格迁移

    verification) 人脸识别(face recognition) • 有一个K个人的人脸数据库 • 获取输入图像 • 如果图像是K个人中的某人(或不认识) • 输入图片,以及某人的ID或者是名字 • 验证输入图片是否是这个人 人脸聚类(Face Clustering) 在数据库中对人脸进行聚类, 直接K-Means即可。 5 1.人脸识别概述 人脸检测的步骤 • 人脸定位 在一次学习问题中,只能通过一个样本进行学习,以能够认 出同一个人。大多数人脸识别系统都需要解决这个问题。 系统需要做的就是,仅仅通过一张已有的照片,来识别前面 这个人确实是她。相反,如果机器看到一个不在数据库里的 人所示),机器应该能分辨出她不是数据库中四个人之一。 ?(???1, ???2) = ?????? ?? ?????????? ??????? ?????? 只要你能学习这个函数?,通过输入一对图片,它将会告诉
    0 码力 | 34 页 | 2.49 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》6-业务落地篇:实现货架洞察Web应⽤

    效果理论:使用 OpenCV 可视化识别结果 • 展现 AI 效果实战:使用 OpenCV 可视化识别结果 • 搭建 AI SaaS 理论:Web 框架选型 • 搭建 AI SaaS 理论:数据库 ORM 选型 • 搭建 AI SaaS 理论:10 分钟快速开发 AI SaaS • 搭建 AI SaaS 实战:10 分钟快速开发 AI SaaS • 交付 AI SaaS:10 分钟快速掌握容器部署 Web 框架 - Flask Python Web 框架 - Flask Flask 常用扩展 Flask 项目常见目录结构 启动文件 manage.py 示例 搭建 AI SaaS 理论:数据库 ORM 选型 ORM 是什么 ORM 是什么 常见的 Python ORM • SQLAlchemy • Flask-SQLAlchemy • Django ORM • peewee
    0 码力 | 54 页 | 6.30 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    2017 Amazon 的人工智能&深度学习 围绕数据的“飞轮” 机器学习 深度学习 人工智能 更多的用户 更好的产品 更多的数据 更好的分析 对象存储 数据库 数据仓库 数据流分析 商业智能 Map/Reduce 内存数据库 数据检索 点击流 用户活动 内容生成 购买 点击 喜好 传感器数据 机器学习& 人工智能 大数据 更多的用户 更好的产品 更多的数据 更好的分析 围绕数据的“飞轮”
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    ⚫Pycharm https://www.jetbrains.com/pycharm/ Pycharm 提供 免费的社区版 与 付费的专业版。专业版额外增加了一些功能, 如项目模板、远程开发、数据库支持等。个人学习 Python 使用免费的社区版 已足够。 如果有edu邮箱,那么推荐使用专业版,edu邮箱是可以免费使用专业版的。 安装过程照着提示一步步操作就可以了。 注意:安装路径尽量不使用带有 read_clipboard() | 从剪切板读取 将DataFrame写入⽂件 df.to_csv() | 写入CSV文件 df.to_excel() | 写入Excel文件 df.to_sql() | 写入SQL表或数据库 df.to_json() | 写入JSON格式的文件 df.to_clipboard() | 写入剪切板 68 Python模块-SciPy ⚫SciPy SciPy是构建在NumPy的基础之上的,它
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    我们有一个窗口(比如说三个单词) ,我们会对所有文本进行滑动。 3.滑动窗口为我们的模型生成训练样本 16 3.Word2Vec (下图左边为CBOW,右边为Skip-Gram) CBOW对小型数据库比较合适,而Skip-Gram在大型语料中表现更好。 17 3.Word2Vec 我们实际构建和训练模型的数据集将如下所示: 这被称为连续词袋结构,并在word2vec论文 one of the ,和抽取式文本摘要(EATS),即直接抽取 原始素材并拼接成简单概要 摘要/标 题生成 内容续写 (例如文 章续写) 整段文本 生成 产品 特色 通过随机Mask(即遮挡)数据库文本中的 词语或语段,让神经网络自主学习复原被 遮挡部分,从而拥有“猜测”缺失内容的 能力,产出预训练模型。再通过大规模预 训练模型理解上文或给定条件,从概率层 面推测最符合要求的输出结果。其本质是
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    ⚫Pycharm https://www.jetbrains.com/pycharm/ Pycharm 提供 免费的社区版 与 付费的专业版。专业版额外增加了一些功能, 如项目模板、远程开发、数据库支持等。个人学习 Python 使用免费的社区版 已足够。 如果有edu邮箱,那么推荐使用专业版,edu邮箱是可以免费使用专业版的。 安装过程照着提示一步步操作就可以了。 注意:安装路径尽量不使用带有 read_clipboard() | 从剪切板读取 将DataFrame写入⽂件 df.to_csv() | 写入CSV文件 df.to_excel() | 写入Excel文件 df.to_sql() | 写入SQL表或数据库 df.to_json() | 写入JSON格式的文件 df.to_clipboard() | 写入剪切板 69 Python模块-SciPy ⚫SciPy SciPy是构建在NumPy的基础之上的,它
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 pytorch 入门笔记-03- 神经网络

    链滴 pytorch 入门笔记 -03- 神经网络 作者:zyk 原文链接:https://ld246.com/article/1639540087993 来源网站:链滴 许可协议:署名-相同方式共享 4.0 国际 (CC BY-SA 4.0) 前言 本节主要内容是如何使用 torch.nn 包来构建神经网络。 上一讲已经讲过了 autograd,nn 包依赖 autograd
    0 码力 | 7 页 | 370.53 KB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
TensorFlow快速入门实战房价预测PyTorch深度学习机器学习课程温州大学12关联规则10深度人脸识别人脸识别风格迁移业务落地实现货架洞察Web亚马亚马逊AWSAIServicesOverview01引言自然语言自然语言处理嵌入pytorch笔记03神经网络神经网神经网络
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩