Visdom可视化Visdom可视化 主讲人:龙良曲 TensorBoard? TensorboardX ▪ pip install tensorboardX TensorboardX Visdom from Facebook Step 1. install Step2. run server damon Step2. run server damon install from source lines:0 码力 | 17 页 | 1.47 MB | 1 年前3
如何利用深度学习提高高精地图生产的自动化率-邹亮0 码力 | 34 页 | 56.04 MB | 1 年前3
QCon2018北京-基于深度学习的视频结构化实践-姚唐仁《基于深度学习的视频结构化实践》 七牛云 AI实验室首席架构师/姚唐仁� • 围绕海量数据提供创新的云服务,帮助客户缩短想法到产品的距离 • 创立6年,每年超过300%的业绩增长 • 已完成5轮融资,累计超过20亿 • 长期服务70多万企业用户和开发者 • 文件数超过2000亿,每日新增文件20亿 • 覆盖全球300个节点 • 覆盖金融、公安、广电媒体、互联网等行业 视觉-最重要的信息感知 2017中国网络视频用户情况 ����2017������������� 传统视频摘要 vs AI视频结构化 内容不完整 依赖经验 实时性差 时效性差 识别范围广 效率高 可迭代 创新基础 传统手工摘要 AI视频结构化 视频结构化场景 视频分解 基础模型要素 ��1�01:02:03-01:10:05� ��1����� �� �� ������ ��PA� ������ 3 4 5 6 ���L ������ ��PA� ����� ���L ��������� ������L 大规模视频训练框架 结构化策略 ���� ������ ���� ���� 主题分类-特征提取 DPN SENet ResNeXt NASNet 主题分类-模型训练 模型融合 a) Early fusion0 码力 | 39 页 | 38.01 MB | 1 年前3
超大规模深度学习在美团的应用-余建平 机器学习能力 = 数据 + 特征 + 模型 • 数据 海量数据: 美团的亿级用户、千万级POI • 特征 大规模离散特征 > 小规模泛化特征 • 模型 DNN > 树模型 > LR 美团超大规模模型应用场景 • 可扩展的机器学习架构 基于Parameter Server架构 数据并行 —— 支持超大规模训练集 模型并行 —— 支持超大规模模型 • 业界千亿级以上的机器学习平台 Entropy、etc • 评估指标 AUC、Loss、MAE、RMSE 支持外部eval工具,计算MAP、NDCG MLX的模型能力 • 提供离线、近线、在线全流程解决方案,各阶段提供扩展方案,降低算法迭代成本; • 支持Online Learning,提供从近线到在线的模型数据通路; • 提供从召回到排序全流程的模型解决方案,为业务提供最佳实践; • 提供系统的平台化工具,为用户提供易用的界面操作; 与PS通信交换模型参数 计算图的计算 • 计算图框架Graph 计算逻辑抽象op,通过op组合形成模型结构 提供正向(forward)、反向(backward)、Loss的操作扩展 模型训练框架 • 模型可变计算路径 运行阶段 计算图裁剪 模型训练框架 • 应用场景——离线预计算 模型召回,ANN检索 粗排模型,降低线上计算量 • 分布式Sharding0 码力 | 41 页 | 5.96 MB | 1 年前3
动手学深度学习 v2.02 读取数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.2.3 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.4 定义模型 . . . 定义模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.3.4 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3.5 定义损失函数 . . softmax回归的从零开始实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.6.1 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.6.2 定义softmax操作0 码力 | 797 页 | 29.45 MB | 1 年前3
Keras: 基于 Python 的深度学习库77 5.3.14 ZeroPadding3D [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.4 池化层 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.4.1 MaxPooling1D 9.6 ReLU[source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.10 标准化层 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.10.1 BatchNormalization . . . . . . . . . . . . . 173 15 初始化 Initializers 226 15.1 初始化器的用法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 15.2 可用的初始化器 . . . . . . . . . . . . . . . . . .0 码力 | 257 页 | 1.19 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112础要求较少的,读者在学习本书的过程中会自然而然地了解算法的相关背景知识,体会到知 识是为了解决问题而生的,避免陷入为了学习而学习的窘境。 尽管作者试图将读者的基础要求降到最低,但是人工智能不可避免地需要使用正式化的 数学符号推导,其中涉及到少量的概率与统计、线性代数、微积分等数学知识,一般要求读 者对这些数学知识有初步印象或了解即可。比起理论基础,读者需要有少量的编程经验,特 别是 Python 语言编程经 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 9 章 过拟合 9.1 模型的容量 9.2 过拟合与欠拟合 9.3 数据集划分 9.4 模型设计 9.5 正则化 9.6 Dropout 9.7 数据增强 9.8 过拟合问题实战 9.9 参考文献 第 卷积神经网络 10.1 全连接网络的问题 10.2 卷积神经网络 10.3 卷积层实现 10.4 LeNet-5 实战 10.5 表示学习 10.6 梯度传播 10.7 池化层 10.8 BatchNorm 层 预览版202112 10.9 经典卷积网络 10.10 CIFAR10 与 VGG13 实战 10.11 卷积层变种 10.120 码力 | 439 页 | 29.91 MB | 1 年前3
亚马逊AWSAI Services OverviewMXNet 概述 MXNet • 节省以及资源效率 • 工程中廉价的GPUs、较小的内存以及网络的限制 • 速度 • 线性的扩展能力 • 简单 • 混合了声明式(declarative)和命令式()代码的特点 为什么选择 MXNet ? MXNet: 可扩展的深度学习框架 MXNet 框架的特点 命令式 NDArray API 声明式 Symbolic Executor MXNet: 47 种语音 24 种语言 低延迟、实时 全托管 Polly: 生活化的语音服务 Voice Quality & Pronunciation 1. 自动化、精准的文本处理 2. 智能化的且易于理解 3. 将语义加入文本当中 4. 定制化的发音 文章、博客 训练材料 Chatbots (Lex) 公告 第一代: 面向机器的交互 第二代: 面向控制& 翻译 第三代: 意图导向 人-机交互会话的发展 Salesforce Microsoft Dynamics Marketo Zendesk Quickbooks Hubspot Lex: 构建自然的通过语音和文本的会话交互 不断提升的 人性化交互… • 联系、服务支持中心的接口 (文本 + 语音) • 员工工作效率和协同 (分钟级别到秒级) Origin Destination Departure Date Flight Booking0 码力 | 56 页 | 4.97 MB | 1 年前3
全连接神经网络实战. pytorch 版2 初始化网络权重-方法一 16 3.3 初始化网络权重-方法二和三 17 4 构建自己的数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 自定义 Variable 数据与网络训练 19 4.2 准确率的可视化 22 4.3 分类结果的可视化 23 4.4 自定义 Dataset 数据集 25 3 4.5 总结 27 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 前言及简介 DezemingFamily 其实更为简单,只是很多教程会一次性给出过多内容,导致读者难以区分什么是必要 的,什么是非必要的。这构成了我写这本书的初衷——从基础到模型结构的步步递进。我们不会 一次性给出一大堆可选择的内容导致学习变得复杂化,而是用到什么就讲什么。本书不可避免要 参考 [2] 的讲解方式,但我们对讲解顺序和内容,以及程序代码都做了大量的改进。说了那么多, 总之,我们的目标是写一个最好的最容易上手的 pytorch 入门教程——从全连接网络开始。0 码力 | 29 页 | 1.40 MB | 1 年前3
AI大模型千问 qwen 中文文档max_new_tokens 参数则用于设置响应的最大长度。此 外,通过 tokenizer.batch_decode() 函数对响应进行解码。关于输入部分,上述的 messages 是一个 示例,展示了如何格式化对话历史记录和系统提示。默认情况下,如果您没有指定系统提示,我们将直接使 用 You are a helpful assistant. 作为系统提示。 1.3.2 流式输出 借助 TextStreamer 下一步 TGW 中包含了许多更多用途,您甚至可以在其中享受角色扮演的乐趣,并使用不同类型的量化模型。您可 以训练诸如 LoRA 这样的算法,并将 Stable Diffusion 和 Whisper 等扩展功能纳入其中。赶快去探索更多高级 用法,并将它们应用于 Qwen 模型中吧! 1.7 AWQ 对于量化模型,我们推荐使用 AWQ 结合 AutoAWQ 。AWQ 即激活感知权重量化,是一种针对 LLM �→safetensors=True) 接下来,您需要准备数据以进行校准。您需要做的就是将样本放入一个列表中,其中每个样本都是一段文 本。由于我们直接使用微调数据来进行校准,所以我们首先使用 ChatML 模板对其进行格式化。例如: data = [] for msg in messages: msg = c['messages'] text = tokenizer.apply_chat_template(msg, tokenize=False0 码力 | 56 页 | 835.78 KB | 1 年前3
共 68 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7













