动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 iv 5.1.3 在前向传播函数中执行代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.1.4 效率 . . . . . . . . . . 3 训练模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 7.4 含并行连结的网络(GoogLeNet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 7.4.1 Inception块 . . . . . . . . . . . . . . . 511 12.3 自动并行 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 12.3.1 基于GPU的并行计算 . . . . . . . . . . . . . . . . . . . . .0 码力 | 797 页 | 29.45 MB | 1 年前3
Keras: 基于 Python 的深度学习库. . . . . . . . . . . . . . . . . . . . . . 27 3.3.4.1 数据并行 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.4.2 设备并行 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • OpenGL 支持的 GPU, 比如 AMD, 通过 PlaidML Keras 后端。 2.5 Keras 拥有强大的多 GPU 和分布式训练支持 • Keras 内置对多 GPU 数据并行的支持。 • 优步的 Horovod 对 Keras 模型有第一流的支持。 • Keras 模型可以被转换为 TensorFlow 估计器并在 Google Cloud 的 GPU 集群上训练。 3.3.4 如何在多 GPU 上运行 Keras 模型? 我们建议使用 TensorFlow 后端。有两种方法可在多个 GPU 上运行单个模型:数据并行和设 备并行。 在大多数情况下,你最需要的是数据并行。 3.3.4.1 数据并行 数据并行包括在每个设备上复制一次目标模型,并使用每个模型副本处理不同部分的输入数据。 Keras 有一个内置的实用函数 keras.utils.multi_0 码力 | 257 页 | 1.19 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版2021121.1 人工智能 信息技术是人类历史上的第三次工业革命,计算机、互联网、智能家居等技术的普及 极大地方便了人们的日常生活。通过编程的方式,人类可以将提前设计好的交互逻辑交给 机器重复且快速地执行,从而将人类从简单枯燥的重复劳动工作中解脱出来。但是对于需 要较高智能水平的任务,如人脸识别、聊天机器人、自动驾驶等任务,很难设计明确的逻 辑规则,传统的编程方式显得力不从心,而人工智能(Artificial 神经网络算法是一类基于神经网络从数据中学习的算法,它仍然属于机器学习的范 畴。受限于计算能力和数据量,早期的神经网络层数较浅,一般在 1~4 层左右,网络表达 能力有限。随着计算能力的提升和大数据时代的到来,高度并行化的 GPU 和海量数据让大 规模神经网络的训练成为可能。 2006 年,Geoffrey Hinton 首次提出深度学习的概念。2012 年,8 层的深层神经网络 AlexNet 发布,并在 发布后,深度学习的真正潜力才得以发挥。传统的机器学习算法并不像神经网络 这样对数据量和计算能力有严苛的要求,通常在 CPU 上串行训练即可得到满意结果。但是 深度学习非常依赖并行加速计算设备,目前的大部分神经网络均使用 NVIDIA GPU 和 Google TPU 等并行加速芯片训练模型参数。如围棋程序 AlphaGo Zero 在 64 块 GPU 上从 零开始训练了 40 天才得以超越所有的 AlphaGo 历史版本;自动网络结构搜索算法使用了0 码力 | 439 页 | 29.91 MB | 1 年前3
机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入Word2Vec 训练流程 训练步骤到此结束。我们从这一步骤中得到稍微好一点的嵌入(`not` ,`thou`,`aaron`和`taco`)。我们现在进行下一步(下一个正样本及 其相关的负样本),并再次执行相同的过程。 当我们循环遍历整个数据集多次时,嵌入继续得到改进。然后我们可以停 止训练过程,丢弃`Context`矩阵,并使用`Embeddings`矩阵作为下一个任务 的预训练嵌入。 27 4 资料来源:《Attention Is All You Need》,Ashish Vaswani et.al 2017 ◼ Transformer摆脱了人工标注数据集的缺陷,模型在质量上更优、 更易于并行化,所需训练时间明显更少 ◼ Transformer通过成功地将其应用于具有大量和有限训练数据的分 析,可以很好地推广到其他任务 ✓ 2017年,在Ashish Vaswani et.al 的论文《Attention 而《Attention Is All You Need》 中提出了一种新的简单架构——Transformer,它完全基于注意力机制, 完全不用重复和卷积,因而这些模型在质量上更优,同时更易于并行化,并 且需要的训练时间明显更少。 ✓ Transformer出现以后,迅速取代了RNN系列变种,跻身主流模型架构基 础。(RNN缺陷正在于流水线式的顺序计算) 图:Transformer模型架构0 码力 | 44 页 | 2.36 MB | 1 年前3
机器学习课程-温州大学-13深度学习-Transformer种LSTM/GRU等) 来 作为编解码器。RNN模块每次只能够吃进一个输入token和前一次的隐藏状态,然 后得到输出。它的时序结构使得这个模型能够得到长距离的依赖关系,但是这也 使得它不能够并行计算,模型效率十分低。 在没有transformer的时候,我们 都是用什么来完成这系列的任务 的呢? 5 1.Transformer介绍 Seq2Seq任务 Seq2Seq 任务指的是输入和输出都是 参数少:相比于 CNN、RNN ,其复杂度更小,参数也更少。所以对算力的要求 也就更小。 2.速度快:Attention 解决了 RNN及其变体模型不能并行计算的问题。Attention机 制每一步计算不依赖于上一步的计算结果,因此可以和CNN一样并行处理。 3.效果好:在Attention 机制引入之前,有一个问题大家一直很苦恼:长距离的信 息会被弱化,就好像记忆能力弱的人,记不住过去的事情是一样的。 资料来源:《Attention Is All You Need》,Ashish Vaswani et.al 2017 ◼ Transformer摆脱了人工标注数据集的缺陷,模型在质 量上更优、更易于并行化,所需训练时间明显更少 ◼ Transformer通过成功地将其应用于具有大量和有限训 练数据的分析,可以很好地推广到其他任务 ◼ Transformer,它完全基于注意力机制, 完全不用重复0 码力 | 60 页 | 3.51 MB | 1 年前3
AI大模型千问 qwen 中文文档textgen python=3.11 conda activate textgen pip install torch torchvision torchaudio 接下来,您可以根据您的操作系统执行 pip install -r 命令来安装相应的依赖项,例如, pip install -r requirements_apple_silicon.txt 对于 requirements 中的 bitsandbytes �→awq.gguf 通过这种方式,您可以在 GGUF 格式的量化模型中应用 AWQ scales,这有助于提升模型的质量。 我们通常将 fp16 模型量化为 2、3、4、5、6 和 8 位模型。要执行不同低比特的量化,只需在命令中替换量化 方法即可。例如,如果你想将你的模型量化为 2 位模型,你可以按照下面所示,将 q4_0 替换为 q2_k : ./quantize models/7B/qwen1_5-7b-chat-fp16 设备来帮助您。特别是对于像 Qwen1. 5-72B-Chat 这样的大模型,单个 GPU 无法支撑其在线服务。在这里,我们通过演示如何仅通过传入参数 tensor_parallel_size ,来使用张量并行来运行 Qwen1.5-72B-Chat 模型: from vllm import LLM, SamplingParams llm = LLM(model="Qwen/Qwen1.5-72B-Chat"0 码力 | 56 页 | 835.78 KB | 1 年前3
亚马逊AWSAI Services OverviewClarifai • Computer Vision APIs AWS 上的 AI 应用 • Pinterest Lens • Netflix 推荐引擎 数千名员工致力于人工智能领域 发现& 搜索 执行 &物流 现有产品的增强 定义新的产品分类 将机器学习拓 展更广领域 Amazon 的人工智能应用 在Amazon 最初的人 工智能应用 (1995) AWS 可以帮助客户把人工智能应用于每个应 K80 Accelerators, 每个运行一对 NVIDIA GK210 GPUs. ▪ 每块GPU 提供 12 GiB 内存 (内存存取带宽达到240 GB/秒), 以及 2,496 个并行处理核心 Instance Name GPU Count vCPU Count Memory Parallel Processing Cores GPU Memory Network Performance0 码力 | 56 页 | 4.97 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波Server System Model Serving System 3 在线机器学习-参数服务器 • 参数规模 • 支持百亿特征维度,千亿参数 • 模型版本 • 多模型多版本:多组实验并行执行,提高实验迭代效率 • 在线版本切换:基于ZK的版本感知机制,动态进行版本切换,实现BASE模型的热更新,实时训练与离线训练周期模型融合 • 模型结构训练与推理兼容:在线PS与离线PS模型结构兼容,自动模型参数转换0 码力 | 36 页 | 16.69 MB | 1 年前3
超大规模深度学习在美团的应用-余建平小规模泛化特征 • 模型 DNN > 树模型 > LR 美团超大规模模型应用场景 • 可扩展的机器学习架构 基于Parameter Server架构 数据并行 —— 支持超大规模训练集 模型并行 —— 支持超大规模模型 • 业界千亿级以上的机器学习平台 开源: PaddlePaddle、XDL,etc. 内部: Abacus、XPS, etc. • Online 计算图裁剪 模型训练框架 • 应用场景——离线预计算 模型召回,ANN检索 粗排模型,降低线上计算量 • 分布式Sharding 模型分片存储,支持超大规模模型 数据并行计算,加速Optimizer计算 • 低频特征过滤 Counting Bloom Filter 概率方式 • 模型数据通路 Base + Delta方式 增量提供ACK机制,确保模型正确性 模型结构 模型参数 PS的参数放置策略 • Ps分布式分片的均衡,避免分片大小不一致 NN网络矩阵按行切分,解决请求包不均衡问题 特征按照Hash方式分布式存储 • 模型并行调超参 grid search random search PS的多模型训练 • 提高内存使用效率 model group内共享特征key的存储 • 超大规模模型 -> 高扇出的分布式PS0 码力 | 41 页 | 5.96 MB | 1 年前3
阿里云上深度学习建模实践-程孟力深度学习应用主要的挑战: 2.模型效果优 化困难 1.方案复杂 训练优化: 数据并行 模型并行 推理优化: Blade 推荐模型优化: 千亿特征 3. 工程优化 RingAllReduce + 层级级联 EasyVision 多机多卡性能对比 工程优化: 数据并行 M6模型 Transformer模型: RapidFormer 人脸分类模型: 人脸分类模型: 超大softmax 3D卷积模型 M6模型 RapidFormer性能 工程优化: 模型并行(Whale) FP16 / Int8 模型剪枝 Op融合(Fusion Stitch) MILR: Blade Disc 工程优化: Blade模型推理 Dynamic Shape Compiler for Machine Learning Workloads0 码力 | 40 页 | 8.51 MB | 1 年前3
共 22 条
- 1
- 2
- 3













