机器学习课程-温州大学-时间序列总结(Series派生的子 类)对象表示。 该对象与datetime具有高度的兼容性,可以直接通过 to_datetime()函数将datetime转换为TimeStamp对象。 pd.to_datetime('20180828') 9 创建时间序列 如果传入的是多个datetime组成的列表,则Pandas会 将其强制转换为DatetimeIndex类对象。 date_index = 时间戳为索引的Series对象。 date_ser = pd.Series([11, 22, 33], index=date_index) 2018-08-20 11 2018-08-28 22 2018-09-08 33 11 创建时间序列 还可以将包含多个datetime对象的列表传给 index参数,同样能创建具有时间戳索引的 Series对象。 date_list datetime(2018, 1, 15] time_se = pd.Series(np.arange(6), index=date_list) 12 创建时间序列 如果希望DataFrame对象具有时间戳索引, 也可以采用上述方式进行创建。 data_demo = [[11, 22, 33], [44, 55, 66]] date_list = [datetime(2018, 1, 23)0 码力 | 67 页 | 1.30 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112加载 MNIST 数据集,不需要开发者额 外编写代码,使用起来非常方便。这里利用 PyTorch 附带的 torchvision 库自动在线下载 MNIST 数据集,并转换为 PyTorch 的数据对象 DataLoader 格式。代码如下: import torch # 导入 pytorch from torch import nn # 导入 pytorch 的网络层子库 from (0.5,), (0.5,)) ])) # 创建 Dataloader 对象,方便以批量形式训练,随机打乱顺序 train_loader=torch.utils.data.DataLoader(train_db, batch_size=batch_size, sh uffle=True) PyTorch 中加载的 MNIST 数据图片,数值的范围为[0,255]。在机器学习中,一般 希望数据的范围在 0 周围的小范围内分布。通过设置预处理 transform 参数,首先将输入图 片转换为张量对象,并将[0,255]范围像素值归一化(Normalize)到[−1,1]区间,更有利于模 型的训练。 网络中每张图片的计算流程是通用的,因此在计算的过程中可以一次进行多张图片的 计算,充分利用0 码力 | 439 页 | 29.91 MB | 1 年前3
机器学习课程-温州大学-numpy使用总结机器学习-NumPy使用总结 黄海广 副教授 2 本章目录 01 NumPy概述 02 NumPy数组(ndarry)对象 03 ufunc函数 04 NumPy的函数库 3 1.NumPy概述 01 NumPy概述 02 NumPy数组(ndarry)对象 03 ufunc函数 04 NumPy的函数库 4 NumPy(Numeric Python) Matlab 等所做的任务。 NumPy是什么? 6 标准的Python中用list(列表)保存值,可以当做数组使用,但因为列表 中的元素可以是任何对象,所以浪费了CPU运算时间和内存。 NumPy诞生为了弥补这些缺陷。它提供了两种基本的对象: ndarray:全称(n-dimensional array object)是储存单一数据类型的 多维数组。 ufunc:全称(universal np NumPy的安装 > pip install numpy 8 2.NumPy数组(ndarry)对象 01 NumPy概述 02 NumPy数组(ndarry)对象 03 ufunc函数 04 NumPy的函数库 9 1.1 认识 NumPy 数组对象 >import numpy as np # 导入NumPy工具包 >data = np.arange(12)0 码力 | 49 页 | 1.52 MB | 1 年前3
Keras: 基于 Python 的深度学习库3.3.6.3 只保存/加载模型的权重 . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.6.4 处理已保存模型中的自定义层(或其他自定义对象) . . . . . . . 30 3.3.7 为什么训练误差比测试误差高很多? . . . . . . . . . . . . . . . . . . . . . . 31 3.3.8 如何获取中间层的输出? # 从第一个模型加载权重;只会影响第一层,dense_1 model.load_weights(fname, by_name=True) 3.3.6.4 处理已保存模型中的自定义层(或其他自定义对象) 如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将 它们传递给加载机制: from keras.models import load_model AttentionLayer}) 或者,你可以使用 自定义对象作用域: from keras.utils import CustomObjectScope with CustomObjectScope({'AttentionLayer': AttentionLayer}): model = load_model('my_model.h5') 快速开始 31 自定义对象的处理与 load_model, model_from_json0 码力 | 257 页 | 1.19 MB | 1 年前3
机器学习课程-温州大学-06机器学习-KNN算法值选择。 • 距离度量。 • 决策规则。 13 2.KNN算法 算法流程如下: 1.计算测试对象到训练集中每个对象的距离 2.按照距离的远近排序 3.选取与当前测试对象最近的k的训练对象, 作为该测试对象的邻居 4.统计这k个邻居的类别频次 5.k个邻居里频次最高的类别,即为测试对象 的类别 K=3 K=5 14 01 距离度量 02 KNN算法 030 码力 | 26 页 | 1.60 MB | 1 年前3
PyTorch OpenVINO 开发实战系列教程第一篇torch.optim 模块、支持 GPU 训 练 torch.cuda 模块,这些都是会经常用的。 4)此外本书当中还会重点关注的 torchvison 库中的一些常见 模型库与功能函数,主要包括对象检测模块与模型库、图象数 据增强与预处理模块等。 以上并不是 pytorch 框架中全部模块与功能说明,作者这里只 列出了跟本书内容关联密切必须掌握的一些模块功能,希望读 者可以更好的针对性学习,掌握这些知识。 很多人开始学习深度学习框架面临的第一个问题就是专业术语 理解跟基本的编程概念与传统面向对象编程不一样,这个是初 学者面临的第一个学习障碍。在主流的面向对象编程语言中, 结构化代码最常见的关键字是 if、else、while、for 等关键字, 而在深度学习框架中编程模式主要是基于计算图、张量数据、 自动微分、优化器等组件构成。面向对象编程运行的结果是交 互式可视化的,而深度学习通过训练模型生成模型文件,然后 默认是基于动态图的方式构建计算图,动态图采用类 似 python 语法,可以随时运行,灵活修改调整;而静态图则 是效率优先,但是在图构建完成之前无法直接运行。可以看出 动态图更加趋向于开发者平时接触的面向对象的编程方式,也 更容易被开发者理解与接受。下图是一个简单的计算图示例: 图 1-4(计算图示意) 图 1-4 中最底层三个节点表示计算图的输入张量数据节点(a、 b、c)、剩下节点表示操作、带箭头的线段表示数据的流向。0 码力 | 13 页 | 5.99 MB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.1.6 转换为其他Python对象 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2 数据预处理 . . . . . . . . . 曲,这可能说明这些歌曲 对此用户不大合适。总的来说,推荐系统会为“给定用户和物品”的匹配性打分,这个“分数”可能是估计 的评级或购买的概率。由此,对于任何给定的用户,推荐系统都可以检索得分最高的对象集,然后将其推荐 给用户。以上只是简单的算法,而工业生产的推荐系统要先进得多,它会将详细的用户活动和项目特征考虑 在内。推荐系统算法经过调整,可以捕捉一个人的偏好。比如,图1.3.4 是亚马逊基于个性化算法推荐的深度 性相关属性?比如,一个球的运动轨迹可以用球的速度、直径和质量来描述。再比如,裁缝们已经开发 出了一小部分参数,这些参数相当准确地描述了人体的形状,以适应衣服的需要。另一个例子:在欧几 里得空间中是否存在一种(任意结构的)对象的表示,使其符号属性能够很好地匹配?这可以用来描述 实体及其关系,例如“罗马”− “意大利”+ “法国”= “巴黎”。 • 因果关系(causality)和概率图模型(probabilistic0 码力 | 797 页 | 29.45 MB | 1 年前3
亚马逊AWSAI Services OverviewAWS解决方案架构师 March 17, 2017 Amazon 的人工智能&深度学习 围绕数据的“飞轮” 机器学习 深度学习 人工智能 更多的用户 更好的产品 更多的数据 更好的分析 对象存储 数据库 数据仓库 数据流分析 商业智能 Map/Reduce 内存数据库 数据检索 点击流 用户活动 内容生成 购买 点击 喜好 传感器数据 机器学习& 人工智能 大数据 更多的用户 appealing.” Amazon Rekognition 基于深度学习的图像识别服务 目标和场景检测 面部分析 人脸比对 人脸识别 集成了 S3, Lambda, Polly, Lex 对象和场景识别 为成千上万的对象、场景和概念生成标签,并配有可信度的数字 • 检索、过滤并对 图片库去粗取精 • 对用户生成的内 容进行智能检索 • 摄影、旅游、房 地产、度假以及 租赁等应用场景 Maple0 码力 | 56 页 | 4.97 MB | 1 年前3
AI大模型千问 qwen 中文文档"self-made" } 以上提供了该数据集中的每个样本的两个示例。每个样本都是一个 JSON 对象,包含以下字段:type 、 messages 和 source 。其中,messages 是必填字段,而其他字段则是供您标记数据格式和数据来源的可 选字段。messages 字段是一个 JSON 对象列表,每个对象都包含两个字段:role 和 content 。其中,role 可以是 system 、user0 码力 | 56 页 | 835.78 KB | 1 年前3
机器学习课程-温州大学-09深度学习-目标检测汽车 检测,我们就去掉?1、?2和?3,然后假设这条线对于19×19的每一 个输出,对于361个格子的每个输出,你会得到这样的输出预测, 就是格子中有对象的概率(??),然后是边界框参数(??、??、?ℎ 和??)。如果你只检测一种对象,那么就没有?1、?2和?3这些预测 分量。 29 2.目标检测算法 mAP(Mean Average Precision) 多个类别的目标检测中,每一个类别都0 码力 | 43 页 | 4.12 MB | 1 年前3
共 24 条
- 1
- 2
- 3













