积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(32)机器学习(32)

语言

全部中文(简体)(31)英语(1)

格式

全部PDF文档 PDF(32)
 
本次搜索耗时 0.065 秒,为您找到相关结果约 32 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 动手学深度学习 v2.0

    内存 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 12.4.3 存储器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 12.4.4 CPU 多机训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 12.7.4 键值存储 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547 13 计算机视觉 549 图1 中用不同的颜色呈现: 目录 3 图1: 全书结构 • 第一部分包括基础知识和预备知识。1节 提供深度学习的入门课程。然后在 2节 中,我们将快速介绍实 践深度学习所需的前提条件,例如如何存储和处理数据,以及如何应用基于线性代数、微积分和概率基 本概念的各种数值运算。3节 和 4节 涵盖了深度学习的最基本概念和技术,例如线性回归、多层感知机 和正则化。 • 接下来的五章集中讨论现代深度学习技术。5节
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    cmd 命令行,输入“nvcc - V”,即可打印当前 CUDA 的版本信息,如图 1.29 所示,如果命令无法识别,则说明安装 失败。同时也可以从系统环境变量 Path 中找到 CUDA 10.1 的路径配置,如图 1.28 所示。 图 1.27 CUDA 安装界面-3 图 1.28 CUDA 安装结果测试-1 图 1.29 CUDA 安装结果测试-2 1.6.3 PyTorch 1 手写数字图片数据集 机器学习需要从数据中间学习,因此首先需要采集大量的真实样本数据。以手写的数 字图片识别为例,如图 3.1 所示,需要收集较多的由真人书写的 0~9 的数字图片,为了便 于存储和计算,通常把收集的原始图片缩放到某个固定的大小(Size 或 Shape),比如 224 个 像素的行和 224 个像素的列(224 × 224),或者 96 个像素的行和 96 个像素的列(96 清晰,同时也可充分利用矩阵计算的并 行加速能力。那么怎么将图片识别任务的输入和输出转变为满足格式要求的张量形式呢? 考虑输入格式,一张灰度图片?使用矩阵方式存储,形状为:[ℎ, ?],?张图片使用形状 为[?, ℎ, ?]的张量?存储。而模型只能接受向量形式的输入特征向量,因此需要将[ℎ, ?]的矩 阵形式图片特征打平成[ℎ ∙ ?]长度的向量,如图 3.6 所示,其中输入特征的长度?in =
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12机器学习-关联规则

    为“模式片段”。分析了这些碎片模式的项集。因此,该方法相对减少了频繁项集 的搜索。 27 3.FP-Growth算法 FP-growth算法思想 FP-growth算法是基于Apriori原理的,通过将数据集存储在FP(Frequent Pattern)树上发现频繁项集,但不能发现数据之间的关联规则。 FP-growth算法只需要对数据库进行两次扫描,而Apriori算法在求每个潜在 的频繁项集时都 不考虑最低节点项I5,因为它没有达到最小支持 计数,因此将其删除。 2.下一个较低的节点是I4。I4出现在两个分支中, {I2,I1,I3,I4:1},{I2,I3,I4:1}。因此,将I4作为后缀, 前缀路径将是{I2,I1,I3:1},{I2,I3:1}。这形成了条件 模式基。 3.将条件模式基视为事务数据库,构造FP树。这 将包含{I2:2,I3:2},不考虑I1,因为它不满足最小支 持计数。 3.FP-Growth算法 4.此路径将生成所有频繁模式的组合:{I2,I4:2}, {I3,I4:2},{I2,I3,I4:2} 5.对于I3,前缀路径将是:{I2,I1:3},{I2:1},这将生 成一个2节点FP树:{I2:4,I1:3},并生成频繁模式: {I2,I3:4},{I1:I3:3},{I2,I1,I3:3}。 6.对于I1,前缀路径是:{I2:4}这将生成一个单节点
    0 码力 | 49 页 | 1.41 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    19 Keras 配置文件保存在哪里? 所有 Keras 数据存储的默认目录是: $HOME/.keras/ 注意,Windows 用户应该将 $HOME 替换为 %USERPROFILE%。如果 Keras 无法创建上述目录 (例如,由于权限问题),则使用 /tmp/.keras/ 作为备份。 Keras 配置文件是存储在 $HOME/.keras/keras.json 中的 JSON yaml_string = model.to_yaml() model = model_from_yaml(yaml_string) • model.save_weights(filepath): 将模型权重存储为 HDF5 文件。 • model.load_weights(filepath, by_name=False): 从 HDF5 文件(由 save_weights 创 建)中加载权重。默认情况 save_format='png', follow_links=False, subset=None, interpolation='nearest') 参数 • directory: 目标目录的路径。每个类应该包含一个子目录。任何在子目录树下的 PNG, JPG, BMP, PPM 或 TIF 图像,都将被包含在生成器中。更多细节,详见 此脚本。 • target_size: 整数元组 (height
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    max_new_tokens=512, streamer=streamer, ) 除了使用 TextStreamer 之外,我们还可以使用 TextIteratorStreamer ,它将可打印的文本存储在一 个队列中,以便下游应用程序作为迭代器来使用: # Repeat the code above before model.generate() # Starting here, we add streamer 5-7B-Chat --outfile models/7B/qwen1_5-7b-chat- �→fp16.gguf “其中,第一个参数指代的是预训练模型所在的路径或者 HF 模型的名称,第二个参数则指的是你想要生成 的 GGUF 文件的路径(此处我将其置于 models/7B 目录下)。请记住,在运行命令之前,需要先创建这个 目录。通过这种方式,你已经为你的 fp16 模型生成了一个 GGUF 文件,接下来你需要根据实际需求将其量 一 个 带 有 AWQ scales 的 fp16 模 型 将 被 保 存。 然 后, 当 你 运 行 convert-hf-to-gguf.py 脚本时,请记得将模型路径替换为带有 AWQ scales 的 fp16 模型的路径,例 如: python convert-hf-to-gguf.py ${quant_path} --outfile models/7B/qwen1_5-7b-chat-fp16-
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    计算机视觉还有助于比赛和策略分 析、球员表现和评级,以及跟踪体育 节目中品牌赞助的可见性。 农业 半自动联合收割机可以利用人工智能 和计算机视觉来分析粮食品质,并找 出农业机械穿过作物的最佳路径。另 外也可用来识别杂草和作物,有效减 少除草剂的使用量。 制造业 计算机视觉也可以帮助制造商更安 全、更智能、更有效地运行,比如预 测性维护设备故障,对包装和产品质 量进行监控,并通过计算机视觉减少 安装过程照着提示一步步操作就可以了。 注意:安装路径尽量不使用带有 中文或空格 的目录,这样在之后的使用过程 中减少一些莫名的错误。 Python 的环境的安装 55 Python 的主要数据类型 ⚫字符串 ⚫整数与浮点数 ⚫布尔值 ⚫日期时间 ⚫其它 56 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 集合主要有两个功能,一个功能是进行集合操作,另一个功能是消除重复元素。 集合的格式 是:set( ),其中()内可以是列表、字典或字符串,因为字符串是以列表的形式存储的 ⚫字典(dict) 字典dict也叫做关联数组,用大括号{ }括起来,在其他语言中也称为map,使用键-值( key-value)存储,具有极快的查找速度,其中key不能重复。 57 Python控制流 ⚫顺序结构 ⚫分支结构 ⚫循环结构 ⚫break、continue和pass
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    同时支持单机和分布式TensorFlow程序� • 支持GPU资源管理和调度� • 不再需要⼿动配置CluserSpec信息,仅需要设置work 和ps的数量� • 训练数据和训练模型基于HDFS统⼀存储� • 作业训练结束自动回收work、ps和Tensorboard进程� • 训练效果和性能没有损失� 基本目标:� TensorFlow on Yarn设计 • 支持GPU亲和性调度(提⾼通信效率)� --training_epochs=20” \ #TF运⾏指令� --input /home/xitong/tf-test/data \#训练样本HDFS路径� --output /home/xitong/tf-test/outputTest \ #保存模型的HDFS路径� --worker-num 3 \ #work数量 � --worker-memory 8192M \ #每个worker需要的内存� SparkFlow介绍 SparkFlow与TensorFlow on Yarn对比:� SparkFlow TensorFlow on Yarn 通过RDD读取训练样本数据,关心 文件存储格式 直接读取HDFS数据,不关心文件存 储格式 Worker和PS的资源同构 Worker和PS可以各自配置资源 不支持GPU调度 支持GPU调度 迁移成本较高 迁移成本低
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    提供正向(forward)、反向(backward)、Loss的操作扩展 模型训练框架 • 模型可变计算路径  运行阶段  计算图裁剪 模型训练框架 • 应用场景——离线预计算  模型召回,ANN检索  粗排模型,降低线上计算量 • 分布式Sharding  模型分片存储,支持超大规模模型  数据并行计算,加速Optimizer计算 • 低频特征过滤  Counting Ps分布式分片的均衡,避免分片大小不一致  NN网络矩阵按行切分,解决请求包不均衡问题  特征按照Hash方式分布式存储 • 模型并行调超参  grid search  random search PS的多模型训练 • 提高内存使用效率  model group内共享特征key的存储 • 超大规模模型 -> 高扇出的分布式PS • 长尾效应:单个分片的抖动(网络、CPU)对请求影响变大 N PS Req … … reply 1 reply 2 reply N … 超过t Backup Request Cancel Request 流式模型的通路 • 持久化存储  本地disk存储,持久化对齐kafka的数据 • PS快速failover  Compaction机制,降低load数据量 • Online Learning对数据流的要求  不重不丢:重复的数据会使模型有偏,数据的缺失
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    2016年 C轮融资 估值20亿美元 9 机器学习的范围 10 • 给定数据的预测问题 ✓ 数据清洗/特征选择 ✓ 确定算法模型/参数优化 ✓ 结果预测 • 不能解决什么 ✓ 大数据存储/并行计算 ✓ 做一个机器人 机器学习可以解决什么问题 11 机器学习发展史 总的来说,人工智能经历了逻辑推理、知识工程、机器 学习三个阶段。 机器学习伴随着人工智能的发展而诞生,它是人工智能 安装过程照着提示一步步操作就可以了。 注意:安装路径尽量不使用带有 中文或空格 的目录,这样在之后的使用过程 中减少一些莫名的错误。 Python 的环境的安装 54 Python 的主要数据类型 ⚫字符串 ⚫整数与浮点数 ⚫布尔值 ⚫日期时间 ⚫其它 55 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 集合主要有两个功能,一个功能是进行集合操作,另一个功能是消除重复元素。 集合的格式 是:set( ),其中()内可以是列表、字典或字符串,因为字符串是以列表的形式存储的 ⚫字典(dict) 字典dict也叫做关联数组,用大括号{ }括起来,在其他语言中也称为map,使用键-值( key-value)存储,具有极快的查找速度,其中key不能重复。 56 Python控制流 ⚫顺序结构 ⚫分支结构 ⚫循环结构 ⚫break、continue和pass
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    型训练很有好处。pytorch 中有两个 模块是用来导入数据的:torch.utils.data.Dataset 以及 torch.utils.data.DataLoader。 Dataset 存储样本以及它们的标签等信息,Dataset 可以使用预加载的数据集(例如 mnist), 也可以使用自定义的数据集;而 DataLoader 是把样本进行访问和索引的工具,它实现了迭代器 功能,也就是说它可以依次将 . u t i l s . data import Dataset from torch . u t i l s . data import DataLoader 前面说过,Dataset 可以存储自定义数据,我们可以继承 Dataset 类,在子类中实现一些固定 功能的函数,这样就相当于封装了自己的数据为 Dataset 类型。为了方便起见,我们先描述如何 使用预加载数据,然后第二章就开 state_dict () , path ) # 恢 复 模 型 model . load_state_dict ( torch . load ( path ) ) 其中,path 是保存模型的路径。有时候我们希望能同时保存模型的一些其他信息,比如 epoch 和优化器的类型,这时我们可以生成一个状态字典: # 保 存 模 型 state = { ’ model ’ : model . state_dict
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
共 32 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
动手深度学习v2PyTorch深度学习机器课程温州大学12关联规则Keras基于PythonAI模型千问qwen中文文档01引言TensorFlowonYarn遇上数据超大大规规模大规模超大规模美团应用建平连接神经网络神经网神经网络实战pytorch
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩