Keras: 基于 Python 的深度学习库Keras: 基于 Python 的深度学习库 Keras: The Python Deep Learning library* Author: Keras-Team Contributor: 万 震 (WAN Zhen) � wanzhenchn � wanzhen@cqu.edu.cn 2018 年 12 月 24 日 *Copyright © 2018 by Keras-Team Keras-Team 前 言 整理 Keras: 基于 Python 的深度学习库 PDF 版的主要原因在于学习 Keras 深度学习库时方 便本地查阅,下载最新 PDF 版本请访问: https://github.com/wanzhenchn/keras-docs-zh。 感谢 keras-team 所做的中文翻译工作,本文档制作基于此处。 严正声明:本文档可免费用于学习和科学研究,可自由传播,但切勿擅自用于商业用途,由 Otherwise, the contributor is not responsible for the consequences. 目录 I 目录 1 Keras: 基于 Python 的深度学习库 1 1.1 你恰好发现了 Keras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 指导原则0 码力 | 257 页 | 1.19 MB | 1 年前3
动手学深度学习 v2.0内存 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 12.4.3 存储器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 12.4.4 CPU 多机训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 12.7.4 键值存储 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547 13 计算机视觉 549 安装CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755 16.3.3 安装库以运行代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757 16.3.4 远程运行Jupyter笔记本0 码力 | 797 页 | 29.45 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112结、归纳出一些逻辑规则,并将逻辑规则以计算机程序的方式实现,来开发出智能系统。 但是这种显式的规则往往过于简单,并且很难表达复杂、抽象的概念和规则。这一阶段被 称为推理期。 1970 年代,科学家们尝试通过知识库加推理的方式解决人工智能,通过构建庞大复杂 的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题, 就是很多复杂、抽象的概念无法用具体的代码实现。比如人类对图片的识别、对语言的理 13 是一个基于 Python 语言、定位底层运算的计算库,Theano 同时支持 GPU 和 CPU 运 算。由于 Theano 开发效率较低,模型编译时间较长,同时开发人员转投 TensorFlow 等原因,Theano 目前已经停止维护。 ❑ Scikit-learn 是一个完整的面向机器学习算法的计算库,内建了常见的传统机器学习算 法支持,文档和案例也较为丰富,但是 Scikit-learn CPU。由于开发时间较早,在业界的知名度较高,2017 年 Facebook 推出了 Caffe 的升级版本 Cafffe2,Caffe2 目前已经融入到 PyTorch 库中。 ❑ Torch 是一个非常优秀的科学计算库,基于较冷门的编程语言 Lua 开发。Torch 灵活性 较高,容易实现自定义网络层,这也是 PyTorch 继承获得的优良基因。但是由于 Lua 语言使用人群较少,Torch0 码力 | 439 页 | 29.91 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波练周期模型融合 • 模型结构训练与推理兼容:在线PS与离线PS模型结构兼容,自动模型参数转换 • 稳定性优化 • 模型快照:基于ps-scheduler的周期模型版本探测与保存,模型稀疏化分片存储 • 冷备容灾:基于checkpoint机制(Local模式&Remote模式),实现参数服务的高可用,支持基于模型的异构集群迁移,支持集 群扩缩容 • 性能优化 • 通信优化:数据请求(P 引起的性能损耗,性能提升3-5倍 • 分区优化:支持多种分区策略(RANGE/HASH/MOD),解决数据倾斜导致的流量热点瓶颈问题,性能提升2-5倍 • 存储优化:自定义存储方式(ByRow&ByKey),基于row进行矩阵压缩存储,参数内存占用减少90% 3 在线机器学习-参数服务器 模型验证 离线训练 实时训练 模型训练 模型部署 在线服务 离线验证 在线发布 在线验证 在线一致性/ 一键打包 端口探测 蓝绿部署/灰度发布 AUC/准确率/ 召回率/… 流量切换 版本更新 全量发布 … verson1 verson2 … kubenetes/olsubmit 模型库 3 在线机器学习-模型服务部署 • 模型评估 • 模型上线部署前指标评估 • 周期使用验证样本进行点击率预估 • 待部署模型与线上模型进行指标对比,评估是否满足上线条件 • 一键部署 •0 码力 | 36 页 | 16.69 MB | 1 年前3
机器学习课程-温州大学-01机器学习-引言2016年 C轮融资 估值20亿美元 9 机器学习的范围 10 • 给定数据的预测问题 ✓ 数据清洗/特征选择 ✓ 确定算法模型/参数优化 ✓ 结果预测 • 不能解决什么 ✓ 大数据存储/并行计算 ✓ 做一个机器人 机器学习可以解决什么问题 11 机器学习发展史 总的来说,人工智能经历了逻辑推理、知识工程、机器 学习三个阶段。 机器学习伴随着人工智能的发展而诞生,它是人工智能 ⚫Pycharm https://www.jetbrains.com/pycharm/ Pycharm 提供 免费的社区版 与 付费的专业版。专业版额外增加了一些功能, 如项目模板、远程开发、数据库支持等。个人学习 Python 使用免费的社区版 已足够。 如果有edu邮箱,那么推荐使用专业版,edu邮箱是可以免费使用专业版的。 安装过程照着提示一步步操作就可以了。 注意:安装路径尽量不使用带有 Python 的环境的安装 54 Python 的主要数据类型 ⚫字符串 ⚫整数与浮点数 ⚫布尔值 ⚫日期时间 ⚫其它 55 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是(0 码力 | 78 页 | 3.69 MB | 1 年前3
机器学习课程-温州大学-01深度学习-引言⚫Pycharm https://www.jetbrains.com/pycharm/ Pycharm 提供 免费的社区版 与 付费的专业版。专业版额外增加了一些功能, 如项目模板、远程开发、数据库支持等。个人学习 Python 使用免费的社区版 已足够。 如果有edu邮箱,那么推荐使用专业版,edu邮箱是可以免费使用专业版的。 安装过程照着提示一步步操作就可以了。 注意:安装路径尽量不使用带有 Python 的环境的安装 55 Python 的主要数据类型 ⚫字符串 ⚫整数与浮点数 ⚫布尔值 ⚫日期时间 ⚫其它 56 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是( 集合主要有两个功能,一个功能是进行集合操作,另一个功能是消除重复元素。 集合的格式 是:set( ),其中()内可以是列表、字典或字符串,因为字符串是以列表的形式存储的 ⚫字典(dict) 字典dict也叫做关联数组,用大括号{ }括起来,在其他语言中也称为map,使用键-值( key-value)存储,具有极快的查找速度,其中key不能重复。 57 Python控制流 ⚫顺序结构 ⚫分支结构 ⚫循环结构 ⚫break、continue和pass0 码力 | 80 页 | 5.38 MB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱训练系统 召回 业务服务 排序 混排 模型 管理 上线 管理 ⽆量 RGW/Cos/ kafka 样本 存储 实时样本 ⽣成服务 离线样本 ⽣成任务 数据 通道 特征 处理 模型 登记 模型 上线 预测 请求 数据 落地 ⽆量 ⽤户⾏为数据上报 特征 库 内容 获取 请求 � 推荐场景的重要性 � PCG的图⽂,视频推荐(腾讯视频,腾讯新 闻,QQ看点,浏览器,微视, 的特点) 训练框架—基于参数服务器架构的分布式训练框架 TB级模型 分⽚ 存储/更新 百TB数据 分⽚训练 Feature 1: 动态空间 Feature 2.1:短时间内只有部分item和user 被命中,只有部分参数被⽤到 参数按需 获取/更新 Storage 异步训练流⽔线和多级存储:提升性能,降低内存成本 � 问题: � Learner线程中参数拉取和参数更新对性能影响⼤ Learner线程中参数拉取和参数更新对性能影响⼤ � 内存成为主要资源瓶颈。由于需要等待全部参数 就绪,Parameter Server难以利⽤速度慢的存储 介质 样本读取 样本解析 参数拉 取 训练 参数更新 查询Sparse Table 查询Dense Tensor Reader Learner Worker 返回参数 Request Handler Parameter Server 查询Sparse0 码力 | 22 页 | 6.76 MB | 1 年前3
机器学习课程-温州大学-12机器学习-关联规则年提出的关联分析算法,它采 取如下分治策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-Tree), 但仍保留项集关联信息。 该算法是对Apriori方法的改进。生成一个频繁模式而不需要生成候选模式。 FP-growth算法以树的形式表示数据库,称为频繁模式树或FP-tree。 此树结构将保持项集之间的关联。数据库使用一个频繁项进行分段。这个片段被称 为“模式片段”。分析了这些碎 27 3.FP-Growth算法 FP-growth算法思想 FP-growth算法是基于Apriori原理的,通过将数据集存储在FP(Frequent Pattern)树上发现频繁项集,但不能发现数据之间的关联规则。 FP-growth算法只需要对数据库进行两次扫描,而Apriori算法在求每个潜在 的频繁项集时都需要扫描一次数据集,所以说Apriori算法是高效的。其中 算法发现频繁项集的过程是: FP-growth算法思想 该算法和Apriori算法最大的不同有两点: 第一,不产生候选集 第二,只需要两次遍历数据库,大大提高了效率。 29 3.FP-Growth算法 FP-Tree ( Frequent Pattern Tree ) FP树(FP-Tree)是由数据库的初始项集组成的树状结构。 FP树的目的是挖掘最 频繁的模式。FP树的每个节点表示项集的一个项。 根节点表示nul0 码力 | 49 页 | 1.41 MB | 1 年前3
《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别版本后,社区便停止更新和维护。 Pillow 是由 Alex Clark 及社区贡献者 一起开发和维护的一款分叉自 PIL 的图像工具库。 至今,社区依然非常活跃,Pillow 仍在快速迭代。 Pillow提供广泛的文件格式支持,高效的内部表示和相当强大的图像处理功能。 核心图像库旨在快速访问以几种基本像素格式存储的数据, 它应该为一般的图像处理工 具提供坚实的基础。 https://github.com/python-pillow/Pillow com/python-pillow/Pillow captcha Catpcha 是一个生成图像和音频验证码的开源工具库。 https://github.com/lepture/captcha from captcha.image import ImageCaptcha from captcha.audio import AudioCaptcha image = ImageCaptcha(fonts=['/path/A wav’) pydot pydot 是用纯 Python 实现的 GraphViz 接口,支持使用 GraphViz 解析和存储 DOT语言 (graph description language)。其主要依赖 pyparsing 和 GraphViz 这两个工具库。 pyparsing:仅用于加载DOT文件,在 pydot 安装期间自动安装。 GraphViz:将图形渲染为PDF,PNG,SVG等格式文件,需独立安装。0 码力 | 51 页 | 2.73 MB | 1 年前3
AI大模型千问 qwen 中文文档CHAPTER1 文档 1.1 安装 要快速上手 Qwen1.5,您可以从 Hugging Face 安装 transformers 库,并使用 Qwen1.5 Collection 中的模型。 我们建议您安装最新版本的 transformers 库,或者至少安装 4.37.0 版本。 1.1.1 Pip 安装 pip install transformers -U 1.1.2 Conda Transformers 实现 Chat Qwen1.5 最重要同时也最简单的用途是通过 transformers 库实现 Chat 功能。在本文档中,我们将展示如何在 流式模式或非流式模式下与 Qwen1.5-7B-Chat 进行对话。 1.3.1 基本用法 你只需借助 transformers 库编写几行代码,就能与 Qwen1.5-Chat 进行对话。实质上,我们通过 from_pretrained torch_dtype="auto", device_map="auto", attn_implementation="flash_attention_2", ) 请 注 意, 原 Qwen 仓 库 中 的 旧 方 法 chat() 现 在 已 被 generate() 方 法 替 代。 这 里 使 用 了 apply_chat_template() 函数将消息转换为模型能够理解的格式。其中的0 码力 | 56 页 | 835.78 KB | 1 年前3
共 39 条
- 1
- 2
- 3
- 4













