积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(28)机器学习(28)

语言

全部中文(简体)(27)英语(1)

格式

全部PDF文档 PDF(28)
 
本次搜索耗时 0.077 秒,为您找到相关结果约 28 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Keras: 基于 Python 的深度学习库

    要在不同的输入上共享同一个层,只需实例化该层一次,然后根据需要传入你想要的输入 即可: # 这一层可以输入一个矩阵,并返回一个 64 维的向量 shared_lstm = LSTM(64) # 当我们重用相同的图层实例多次,图层的权重也会被重用 (它其实就是同一层) encoded_a = shared_lstm(tweet_a) encoded_b = shared_lstm(tweet_b) # 然后再连接两个向量: 让我们暂停一会,看看如何读取共享层的输出或输出尺寸。 3.2.6 层「节点」的概念 每当你在某个输入上调用一个层时,都将创建一个新的张量(层的输出),并且为该层添加 一个「节点」,将输入张量连接到输出张量。当多次调用同一个图层时,该图层将拥有多个节点 索引 (0, 1, 2…)。 在之前版本的 Keras 中,可以通过 layer.get_output() 来获得层实例的输出张量,或者通 过 layer.output_shape Input(shape=(100,), dtype='int32') encoded_video_question = question_encoder(video_question_input) # 这就是我们的视频问答模式: merged = keras.layers.concatenate([encoded_video, encoded_video_question]) output = Dense(1000,
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    . . . . . . . . . . . . . . . . 504 12.1.2 混合式编程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 12.1.3 Sequential的混合式编程 . . . . . . . . . . . . . . . . . . . . . 载的PDF访问,也可以作为网站在互联网上访问。目前还没有完全适合这些需求的工具和工作流程,所以我 们不得不自行组装。我们在 16.5节 中详细描述了我们的方法。我们选择GitHub来共享源代码并允许编辑,选 择Jupyter记事本来混合代码、公式和文本,选择Sphinx作为渲染引擎来生成多个输出,并为论坛提供讨论。 虽然我们的体系尚不完善,但这些选择在相互冲突的问题之间提供了一个很好的妥协。我们相信,这可能是 第一本使用这种集成工作流程出版的书。 DeSantis、Adam Selipsky和Andrew Jassy对撰写本书的慷慨支持。如果没有可用的时间、资源、与同事的讨论和不断的鼓励,这本书就不会出版。 小结 • 深度学习已经彻底改变了模式识别,引入了一系列技术,包括计算机视觉、自然语言处理、自动语音识 别。 • 要成功地应用深度学习,必须知道如何抛出一个问题、建模的数学方法、将模型与数据拟合的算法,以 及实现所有这些的工程技术。
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    进行下载,只需将上述代码的第一行更改为以下内容: from modelscope import AutoModelForCausalLM, AutoTokenizer 借助 TextStreamer ,chat 的流式模式变得非常简单。下面我们将展示一个如何使用它的示例: ... # Reuse the code before `model.generate()` in the last code snippet from 1.3 使用 Transformers 实现 Chat Qwen1.5 最重要同时也最简单的用途是通过 transformers 库实现 Chat 功能。在本文档中,我们将展示如何在 流式模式或非流式模式下与 Qwen1.5-7B-Chat 进行对话。 1.3.1 基本用法 你只需借助 transformers 库编写几行代码,就能与 Qwen1.5-Chat 进行对话。实质上,我们通过 from_pretrained 示,我们将直接使 用 You are a helpful assistant. 作为系统提示。 1.3.2 流式输出 借助 TextStreamer ,您可以将与 Qwen 的对话切换到流式传输模式。下面是一个关于如何使用它的示例: # Repeat the code above before model.generate() # Starting here, we add streamer
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 房源质量打分中深度学习应用及算法优化-周玉驰

    LSTM 2019 KE.COM ALL COPYRIGHTS RESERVED 22 DNN 2019 KE.COM ALL COPYRIGHTS RESERVED 23 深度学习模型结构  混合模型:DNN + RNN  Deep neural networks (DNN) - 全连接的多层感知机 - BatchNormalization - 激活层(RELU) - dropout正则化 自然去化率:3.8% 去化率(一周平均值) 2019 KE.COM ALL COPYRIGHTS RESERVED 35 人工选房 VS AI选房  人工选房和AI选房重合率48%  三种模式下的去化率 • 人工+AI:33% • 纯AI:26% • 纯人工:21%  条件:基于相同的名额下进行比较 人工+AI 去化率33% 纯人工 去化率21% 纯AI 去化率26% 2019 ALL COPYRIGHTS RESERVED 46 总结&思考  AI选房解决的是房地产领域的TopN排序问题  AI选房采用了DNN + RNN的混合网络结构 - DNN,静态数据;RNN,时序数据 - DNN+RNN的混合模型,提供了静态数据+时序数据的解决方案  模型输出值并不能直接适用于业务,需要做一些转换 - 为了便于经纪人理解和指导经纪人, 采用分数映射和雷达图两种方式
    0 码力 | 48 页 | 3.75 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    模型⼤⼩超TB � 单个请求需要15W个key � 耗时要求10ms以下 � 资讯业务请求量⼤ (>10000请求/秒) � 模型有多个版本 � 原有在线分布式存储系统的 问题 � 主备模式资源严重浪费 � 数据读写需要加锁 � ⽀持多模型和模型多版本 困难 >15亿key/秒 近千台 只读版本 写版本 CPU型服务 Feature 2.2 Hotkey缓存优化 <10台 for Distributed Training Dense参数,每次 都⽤,快速收敛 Sparse参数,随数 据变化,收敛度差 异⼤ 基于动态阈值 的稀疏化压缩 float16压缩 特点 混合压缩 ⽅案 效果 ~-90% -50% 训练速度提升 10%-30% 在线推理服务成本⾼,上线模型可以变⼩么?---模型压缩 模型的⼤⼩由什么决定? Key + embedding values 变⻓Embedding 特征出现次数少,⽤1个float 结合show/click,有效果提升 2. 更少的key: group lasso key级别的稀疏化 3. 更短的values a) 混合精度: float16+int8+int4 b) 量化压缩,1bit或2bit 优点:与优化器⽆关 缺点:1. 只适合低频特征多的场景 2. 变⻓编码,不利于性能优化
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    继承获得的优良基因。但是由于 Lua 语言使用人群较少,Torch 一直未能获得主流应用。 ❑ MXNet 由华人陈天奇和李沐等人开发,是亚马逊公司的官方深度学习框架。采用了 命令式编程和符号式编程混合方式,灵活性高,运行速度快,文档和案例也较为丰 富。 ❑ Keras 是一个基于 Theano 和 TensorFlow 等框架提供的底层运算而实现的高层框架, 提供了大量快速训练、测试网络的高层接口。对于常见应用来说,使用 接口设计频繁变动,功能设计重复冗余, 符号式编程开发和调试非常困难等问题,TensorFlow 1.x 版本一度被业界诟病。2019 年,Google 推出 TensorFlow 2 正式版本,将以动态图优先模式运行,从而能够避免 TensorFlow 1.x 版本的诸多缺陷。 ❑ PyTorch 是 Facebook 基于原 Torch 框架推出的采用 Python 作为主要开发语言的深度学 习框架。PyTorch 0的方式叫做命令式编 预览版202112 1.5 深度学习框架 15 程,也称为动态图模式。PyTorch 是采用动态图模式的深度学习框架,开发效率高,调试 方便,所见即所得。一般认为,动态图模式开发效率高,但是运行效率可能不如静态图模 式,更适合算法设计和开发;静态图模式运行效率高,更适合算法部署。然而并不全是如 此,在很多任务上,PyTorch 的速度都优于 TensorFlow,而且
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 13. 杨赛赛-基于深度学习的多维时间序列预测在数据机房中的应用

    捕获简单线性关系,模型 简单 ⚫ 代表算法有AR, ARIMA 基于深度学习的 时间序列预测 ⚫ 利用多维时间序列之间的 信息 ⚫ 对变周期序列,多维空间 依赖序列预测较弱 ⚫ 代表算法有RNN,LSTM 混合多维时间序列预测 ⚫ 提取多维序列之间更加复杂 的关系 ⚫ 提取维度之间空间依赖关系, 长短期依赖关系 ⚫ 算法有LSTNet,TPA-LSTM 多维时间序列预测方法解决机房温度预测 对数据包含的信息提取能力越来越强
    0 码力 | 17 页 | 2.49 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-14深度学习-Vision Transformer (ViT)

    除此之外,初始化时的位置嵌入不携带关于patch二维位置的信息,并且patch之间的所有空间关 系都需要从头学习。 4.模型缺点与改进 29 改进 作为原始图像块的替代方法,输入序列可以由CNN的特征图形成。 在该混合模型中,将patch嵌入投影E应用于从CNN feature map中提取的patch。 作为一种特殊情况,patches的空间大小可以是1x1,这意味着输入序列是通过简单地打平 feature
    0 码力 | 34 页 | 2.78 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    Gigabit 深度学习框架 – MXNet 概述 MXNet • 节省以及资源效率 • 工程中廉价的GPUs、较小的内存以及网络的限制 • 速度 • 线性的扩展能力 • 简单 • 混合了声明式(declarative)和命令式()代码的特点 为什么选择 MXNet ? MXNet: 可扩展的深度学习框架 MXNet 框架的特点 命令式 NDArray API 声明式 Symbolic
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 复杂环境下的视觉同时定位与地图构建

    VR》 SLAM应用介绍 • 增强现实:Google Tango Google的Tango项目演示视频 Tango为终端开发者提供了从硬件到软件的整套AR开发套件 SLAM应用介绍 • 混合现实:微软HoloLens HoloLens融合了场景位置感知和头盔显示技术,并提供了完整的软硬件解决方案。 Hololens部分传感器 左右双目+前视RGB摄像头+深度传感器 Hololens宣传视频
    0 码力 | 60 页 | 4.61 MB | 1 年前
    3
共 28 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
Keras基于Python深度学习动手v2AI模型千问qwen中文文档房源质量打分应用算法优化周玉驰推荐基础特点大规规模大规模系统设计PyTorch深度学习13杨赛赛多维时间序列预测数据数据机房中机器课程温州大学14VisionTransformerViT亚马亚马逊AWSAIServicesOverview复杂环境视觉同时定位地图构建
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩