积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(15)机器学习(15)

语言

全部中文(简体)(14)英语(1)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.080 秒,为您找到相关结果约 15 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 动手学深度学习 v2.0

    351 9.4 双向循环神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 9.4.1 隐马尔可夫模型中的动态规划 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 9.4.2 双向模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 9.4.3 双向循环神经网络的错误应用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 9.5 机器翻译与数据集 . . . . . . . . . . 应用预训练词向量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681 14.8 来自Transformers的双向编码器表示(BERT) . . . . . . . . . . . . . . . . . . . . . . . . . 683 14.8.1 从上下文无关到上下文敏感 . . . . . .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    算法应用在手写数字图片识别上,取得 了巨大成功,这套系统成功商用在邮政编码识别、银行支票识别等系统上;1997 年,现在 应用最为广泛的循环神经网络变种之一 LSTM 被 Jürgen Schmidhuber 提出;同年双向循环 神经网络也被提出。 遗憾的是,神经网络的研究随着以支持向量机(Support Vector Machine,简称 SVM)为 代表的传统机器学习算法兴起而逐渐进入低谷,称为人工智能的第二次寒冬。支持向量机 1974 BP反向传播 Hopfield 网络 1982 1985 Boltzmann 机器 受限Boltzmann 1986 RNN 1986 1986 MLP 1990 LeNet 双向RNN 1997 1997 LSTM 2006 DBN深度 置信网络 图 1.8 浅层神经网络发展时间线 1.2.2 深度学习 2006 年,Geoffrey Hinton 便捷功能,何乐而不为呢。首先从 https://www.anaconda.com/distribution/#download-section 网址进入 Anaconda 下载页面,选择 Python 最新版本的下载链接即可下载,下载完成后安 装即可进入安装程序。如图 1.22 所示,勾选”Add Anaconda to my PATH environment variable”一项,这样可以通过命令行方式调用 Anaconda
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    作为其张量操作库。请跟随这些指引来配置其他 Keras 后端。 1.6 技术支持 你可以提出问题并参与开发讨论: • Keras Google group。 • Keras Slack channel。使用 这个链接 向该频道请求邀请函。 你也可以在 Github issues 中张贴漏洞报告和新功能请求(仅限于此)。注意请先阅读规范 文档。 KERAS: 基于 PYTHON 的深度学习库 4 1.7 为什么取名为 Bidirectional [source] keras.layers.Bidirectional(layer, merge_mode='concat', weights=None) RNN 的双向封装器,对序列进行前向和后向计算。 参数 • layer: Recurrent 实例。 • merge_mode: 前向和后向 RNN 的输出的结合模式。为 {’sum’, ’mul’, ’concat’ 设置时可用)。 • save_format: “png”, “jpeg” 之一(仅当 save_to_dir 设置时可用)。默认:“png”。 • follow_links: 是否跟踪类子目录中的符号链接(默认为 False)。 • subset: 数据子集 (“training” 或 “validation”),如果在 ImageDataGenerator 中设置了 validation_split。
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-11深度学习-序列模型

    深度学习-序列模型 黄海广 副教授 2 03 长短期记忆(LSTM) 04 双向循环神经网络 本章目录 01 序列模型概述 02 循环神经网络(RNN) 05 深层循环神经网络 3 03 长短期记忆(LSTM) 04 双向循环神经网络 1.序列模型概述 01 序列模型概述 02 循环神经网络(RNN) 同一层节点之间无关联,从而导致获取时序规则方面功 能不足  循环神经网络可以解决时序问题  基于语言模型(LM),故可以捕捉时序规则信息  它是如何实现的? 7 03 长短期记忆(LSTM) 04 双向循环神经网络 2.循环神经网络(RNN) 01 序列模型概述 02 循环神经网络(RNN) 05 深层循环神经网络 8 2.循环神经网络(RNN) ?<1> = 3.2 × 10−13, 而第二句话的概率是: ? The apple and pear salad = 5.7 × 10−10, 15 03 长短期记忆(LSTM) 04 双向循环神经网络 3.长短期记忆(LSTM) 01 序列模型概述 02 循环神经网络(RNN) 05 深层循环神经网络 16 3.长短期记忆(LSTM) L L L L
    0 码力 | 29 页 | 1.68 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    模式结合 上下文进行推导,生成最终文本。 ◼ Transformer架构可分为自回归系列(例如GPT-3,偏好生成性任务)、双向Transformer+Mask的自编码系列(例如BERT, 偏好自然语言理解)、Encoder-decoder架构(例如T5,使用双向/单向attention,偏好条件文本生成) 图:Transformer典型技术场景下的原理介绍如下所述 Transformer ✓ 相比于Google的BERT(Bidirectional Encoder Representations from Transformers,双向编码生成Transformer), GPT仅采用上文 预测单词(BERT采用了基于上下文双向的预测手段)。 注:ChatGPT的表现更贴近人类意图,部分因为一开始GPT是基于上文的预测,这更贴近人类的话语模式,因为人类言语无法基于将来的话来做分析。
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-13深度学习-Transformer

    02 Transformer的工作流程 04 BERT 4 1.Transformer介绍 为什么需要用transformer 其实在之前我们使用的是RNN(或者是其的单向或者双向变种LSTM/GRU等) 来 作为编解码器。RNN模块每次只能够吃进一个输入token和前一次的隐藏状态,然 后得到输出。它的时序结构使得这个模型能够得到长距离的依赖关系,但是这也 使得它不能够并行计算,模型效率十分低。 上预训练好的算法模型下载方式,这使得所有人都可以通 过它来构建一个涉及NLP的算法模型,节约了大量训练语 言模型所需的时间,精力,知识和资源 51 4.BERT BERT—模型结构 特点: 1.完全的双向, 每一层都是同时关乎上下文 2. transformer 可以对长句子有更强的特征抽取的能力 输入 词嵌入 段嵌入 位置嵌入 52 4.BERT BERT—模型结构 2个BERT的模型都有一个很大的编码器层数,(论 ,512个隐藏层单元,和8个注意头) 53 如何训练BERT 方法1:MLM(Masked Language Modeling) 当前词出现不只是单单依靠上文或者下文,其 实应该是同时依赖于上下文深层的双向RNN会 互相透露信息。 句子中有15%的词汇被随机mask掉 交给模型 去预测被mask的部分到底是什么 词语的可能性太多了,中文一般是字 如果BERT训练的向量好,那分类自然OK 4
    0 码力 | 60 页 | 3.51 MB | 1 年前
    3
  • pdf文档 Qcon北京2018-《深度学习在视频搜索领域的实践》-刘尚堃pdf

    ��������NDCG ��1%���� • �������������� • 测试集a 语kr工标注gTQuPG VTuVh • 目前最高:215 a0.+x • 固定数据尝试e同模型a • 双向8ST9+/VVHPVLQP 0.+x • 0L5>A GTQRQuV 0.8x • 固定模型尝试VHTO HOEHGGLPg初始化方式a 模型 初始化方式
    0 码力 | 24 页 | 9.60 MB | 1 年前
    3
  • pdf文档 Qcon北京2018-《文本智能处理的深度学习技术》-陈运文

    访问 中国。 地名 人名 地名 国家-总统 (美国,国家-总统,特朗普) 知识图谱关系抽取:基于深度学习 基于参数共享的方法 对于输入句子通过共用的 word embedding 层,然后接双向的 LSTM 层来对输入进行编码。然后分别使用一个 LSTM 来进行命名实体识别 (NER)和一个 CNN 来进行关系分类(RC)。 基于联合标注的方法 把原来涉及到序列标注任务和分类任务的关系抽取完全变成了一个序
    0 码力 | 46 页 | 25.61 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12机器学习-关联规则

    FP-Growth算法 构建FP树 1.考虑到根节点为空(null)。 2. T1:I1、I2、I3的第一次扫描包含三个项目{I1:1}、 {I2:1}、{I3:1},其中I2作为子级链接到根,I1链接到I2 ,I3链接到I1。 (这里根据项集的数量排序成I2、I1、I3) Null l2:1 l1:1 l3:1 ② 再次扫描数据库并检查事务。检查第一个事务并找出其中的项集。计数 最 T1:I1、I2、I3的第一次扫描包含三个项目{I1:1}、 {I2:1}、{I3:1},其中I2作为子级链接到根,I1链接到I2 ,I3链接到I1。 3.T2:包含I2、I3和I4,其中I2链接到根,I3链接到I2, I4链接到I3。但是这个分支将共享I2节点,就像它已经 在T1中使用一样。将I2的计数增加1,I3作为子级链接 到I2,I4作为子级链接到I3。计数是{I2:2},{I3:1}, {I4:1}。 Null ③ 36 3.FP-Growth算法 构建FP树 4.T3:I4、I5。类似地,在创建子级时,一个带有I5的新分支 链接到I4。 5.T4:I1、I2、I4。顺序为I2、I1和I4。I2已经链接到根节点 ,因此它将递增1。同样地,I1将递增1,因为它已经链接到 T1中的I2,因此{I2:3},{I1:2},{I4:1}。 6.T5:I1、I2、I3、I5。顺序为I2、I1、I3和I5。因此{I2:4},
    0 码力 | 49 页 | 1.41 MB | 1 年前
    3
  • pdf文档 pytorch 入门笔记-03- 神经网络

    链滴 pytorch 入门笔记 -03- 神经网络 作者:zyk 原文链接:https://ld246.com/article/1639540087993 来源网站:链滴 许可协议:署名-相同方式共享 4.0 国际 (CC BY-SA 4.0) 前言 本节主要内容是如何使用 torch.nn 包来构建神经网络。 上一讲已经讲过了 autograd,nn 包依赖 autograd 计算损失(输出结果和正确值的差值大小); 5. 将梯度反向传播回网络的参数; 6. 更新网络的参数,主要使用如下简单的更新原则: weight = weight - learning_rate * gradient 原文链接:pytorch 入门笔记 -03- 神经网络 定义网络 开始定义一个网络: import torch import torch.nn as nn import torch.nn.functional 函数(用来计算梯度)会被 autograd 自动创建。 可以在 forward 函数中使用任何针对 Tensor 的操作。 net.parameters() 返回可被学习的参数(权重)列表和值 原文链接:pytorch 入门笔记 -03- 神经网络 params = list(net.parameters()) print(len(params)) print(params[0].size())
    0 码力 | 7 页 | 370.53 KB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
动手深度学习v2PyTorch深度学习Keras基于Python机器课程温州大学11序列模型12自然语言自然语言处理嵌入13TransformerQcon北京2018视频搜索领域实践刘尚pdf文本智能技术陈运文关联规则pytorch入门笔记03神经网络神经网神经网络
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩