积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(28)机器学习(28)

语言

全部中文(简体)(27)英语(1)

格式

全部PDF文档 PDF(28)
 
本次搜索耗时 0.092 秒,为您找到相关结果约 28 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    函 数、常用网络层、网络训练、模型保存与加载、模型部署等一系列深度学习系统的便捷功 能。常用网络层主要放置在 nn 子模块中,优化器主要放置在 optim 子模块中,模型部署主 要通过 ONNX 协议实现。使用 PyTorch 开发,可以方便地利用这些功能完成常用算法业务 流程,高效稳定灵活。 1.6 开发环境安装 在领略完深度学习框架所带来的便利后,现在来着手在本地计算机环境上安装 trix Multiplication,简称 matmul)。由于 ?@?的运算结果是形状为[?, ?out]的矩阵,与向量?并不能直接相加,因此批量形式的+号 需要支持自动扩展功能(Broadcasting),将向量?扩展为形状为[?, ?out]的矩阵后,再与?@? 相加。 考虑两个样本,输入特征长度?in = 3,输出特征长度?out = 2的模型,式(3.1)展开 为: [?1 3],可以直接与?@?进行相加运算,从而获得线性层的输出张量, 这才是严格意义上的运算过程。实际上,上述插入维度和复制数据的步骤并不需要开发者 手动执行,PyTorch 会自动完成,这是下一节要介绍的自动扩展功能。 考虑另一个例子,输入张量为 2 行 2 列的矩阵,创建张量如下: In [82]: x = torch.arange(4) x = torch.reshape(x,[2,2])
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    下一步 TGW 中包含了许多更多用途,您甚至可以在其中享受角色扮演的乐趣,并使用不同类型的量化模型。您可 以训练诸如 LoRA 这样的算法,并将 Stable Diffusion 和 Whisper 等扩展功能纳入其中。赶快去探索更多高级 用法,并将它们应用于 Qwen 模型中吧! 1.7 AWQ 对于量化模型,我们推荐使用 AWQ 结合 AutoAWQ 。AWQ 即激活感知权重量化,是一种针对 LLM {generated_text!r}") 1.10.3 适配 OpenAI-API 的 API 服务 借助 vLLM,构建一个与 OpenAI API 兼容的 API 服务十分简便,该服务可以作为实现 OpenAI API 协议的服 务器进行部署。默认情况下,它将在 http://localhost:8000 启动服务器。您可以通过 --host 和 --port 参数 来自定义地址。请按照以下所示运行命令: python 通过跨区域和跨云充分利用多个资源池,以获得最佳的 GPU 可用性。 • 把费用降到最低——SkyPilot 在各区域和云平台中为您挑选最便宜的资源。无需任何托管解决方案的 额外加价。 • 将服务扩展到多个副本上,所有副本通过单一 endpoint 对外提供服务 • 所有内容均保存在您的云账户中(包括您的虚拟机和 bucket) • 完全私密 - 没有其他人能看到您的聊天记录 22 Chapter
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    记录,并得到成熟的、维护 良好的工具的支持。关键思想应该被清楚地提炼出来,尽可能减少需要让新的从业者跟上时代的入门时间。 成熟的库应该自动化常见的任务,示例代码应该使从业者可以轻松地修改、应用和扩展常见的应用程序,以 满足他们的需求。以动态网页应用为例。尽管许多公司,如亚马逊,在20世纪90年代开发了成功的数据库驱 动网页应用程序。但在过去的10年里,这项技术在帮助创造性企业家方面的潜力已经得到了更大程度的发挥, 特定的、面向目标的方式设计、训练和部署的。虽然他们的行为可能会给人一种通用智能的错觉,但设计的 基础是规则、启发式和统计模型的结合。其次,目前还不存在能够自我改进、自我推理、能够在试图解决一 般任务的同时,修改、扩展和改进自己的架构的“人工通用智能”工具。 一个更紧迫的问题是人工智能在日常生活中的应用。卡车司机和店员完成的许多琐碎的工作很可能也将是自 动化的。农业机器人可能会降低有机农业的成本,它们也将使收割作业自动化。工业革命的这一阶段可能对 行按元素操作。在某些情况下,即使形状不同, 我们仍然可以通过调用 广播机制(broadcasting mechanism)来执行按元素操作。这种机制的工作方式如 下: 1. 通过适当复制元素来扩展一个或两个数组,以便在转换之后,两个张量具有相同的形状; 2. 对生成的数组执行按元素操作。 在大多数情况下,我们将沿着数组中长度为1的轴进行广播,如下例子: a = torch.arange(3)
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测

    TensorFlow 训练模型的工作流 数据读入 数据分析 数据 规范化 创建模型 (数据流图) 创建会话 (运行环境) 训练模型 数据分析库:Pandas Pandas 是一个 BSD 开源协议许可的,面向 Python 用户的高性能和易于上手的数 据结构化和数据分析工具。 数据框(Data Frame)是一个二维带标记的数据结构,每列(column)数据类型 可以不同。我们可以将其当作电子表格或数据库表。 方法专门用于线性关系的可视化,适用于回归模型。 数据分析(3D) Axes3D.scatter3D 方法专门用于绘制3维的散点图。 数据归一化(3D) 数据处理:NumPy NumPy 是一个 BSD 开源协议许可的,面向 Python 用户的基础科学计算库,在多 维数组上实现了线性代数、傅立叶变换和其他丰富的函数运算。 X y 创建线性回归模型(数据流图) 创建会话(运行环境) 使用 TensorBoard
    0 码力 | 46 页 | 5.71 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》5-商品识别篇:使用ResNet识别你的货架商品

    应⽤用:检测SKU抠图与分类标注流程 • 应⽤用:分类训练集与验证集划分 • 应⽤用:使⽤用TensorFlow 2训练ResNet • 应⽤用:使用ResNet识别货架商品 • 扩展:图像分类常用数据集综述 • 扩展:图像分类更多应⽤用场景介绍 目录 基础:图像分类问题定义与说明 图像分类问题 语义级分类 细粒度分类 图像分类问题 实例级分类 识别问题 图像分类问题 实例级分类 TensorFlow 2 训练 ResNet “Hello TensorFlow” Try it! 应⽤用:使用ResNet识别货架商品 “Hello TensorFlow” Try it! 扩展:图像分类常用数据集综述 https://github.com/zalandoresearch/fashion-mnist http://yann.lecun.com/exdb/mnist/ MNIST edu/Image_Datasets/Caltech256/ Caltech 101 & Caltech 256 https://www.pinlandata.com/rp2k_dataset 扩展:图像分类更多应⽤用场景介绍 图像分类应用:牛脸识别与畜牧险维保 图像分类应用:户型图识别(空间、家具) 原始户型图 空间分割 (整体效果) 空间分割 (中间结果) 图像分类应用:智能相册
    0 码力 | 58 页 | 23.92 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》4-商品检测篇:使用RetinaNet瞄准你的货架商品

    应用:划分检测训练集与测试集 • 应用:生成CSV 格式数据集与标注 • 应用:使用 TensorFlow 2 训练 RetinaNet • 应用:使用 RetinaNet 检测货架商品 • 扩展:目标检测常用数据集综述 • 扩展:目标检测更多应用场景介绍 目录 基础:目标检测问题定义与说明 目标检测问题 目标检测评估:Ground Truth 目标检测评估: Intersection over Union TensorFlow 2 训练 RetinaNet “Hello TensorFlow” Try it! 应用:使用 RetinaNet 检测货架商品 “Hello TensorFlow” Try it! 扩展:目标检测常用数据集综述 通用目标检测数据集 • The ImageNet Large Scale Visual Recognition Challenge ILSVRC • The PASCAL 21841 图像总数: 1400万+ 带有 Bounding box 的图像总数: 1,034,908 带有 SIFT 特征的识别小类: 1000 带有 SIFT 特征的图像总数: 1200万 扩展:目标检测更多应用场景介绍 目标检测应用:仓库流水审计 目标检测应用:仓库流水审计 目标检测应用:仓库盘点 无人智能盘点 人工盘点 目标检测应用:安全防护检测 目标检测应用:内容审核 目标检测应用:车流统计
    0 码力 | 67 页 | 21.59 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    进程遗留问题,需要⼿动杀死� • 缺乏作业统⼀管理,不便对作业运⾏状态跟踪� • 日志查看不⽅便� � 总结:� TensorFlow使用现状及痛点 • 集群资源的管理(目前支持CPU、内存,需要扩展GPU 资源管理)� • 作业的统⼀管理、状态跟踪� • 资源组(Schedule Pool)的划分� • 作业进程的资源隔离� Yarn能解决什么问题:� TensorFlow on Yarn设计 Web的⽅式查看作业的运⾏状况和作业日志� • 在线查看Tensorboard� • HistoryServer支持查看结束作业的日志和状态信息� • 控制已有的TensorFlow作业的迁移成本(最多改三⾏ 代码)� 扩展目标:� TensorFlow on Yarn设计 tensorflow-submit \� --app-name “tfdemo” \#作业名� --files tfTestDemo 需要知道具体GPU卡号,代码分配 计算任务到指定GPU设备 设备亲和性影响较小 设备亲和性影响较大 TensorFlow on Yarn技术细节揭秘 Yarn支持GPU调度ResourceManager端实现:� 扩展org.apache.hadoop.yarn.api.records.Resource抽象类及其实现,增加:� � public abstract int getGpuCores();� � public
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    MXNet 概述 MXNet • 节省以及资源效率 • 工程中廉价的GPUs、较小的内存以及网络的限制 • 速度 • 线性的扩展能力 • 简单 • 混合了声明式(declarative)和命令式()代码的特点 为什么选择 MXNet ? MXNet: 可扩展的深度学习框架 MXNet 框架的特点 命令式 NDArray API 声明式 Symbolic Executor MXNet: 要避开的面孔 • 获得人口学以及情感的数 据推荐最佳照片 • 提高在线约会匹配的推荐 • 动态的个性化广告 人脸比对 测量两张图片中同一个人的可能性 • 为应用和设备添加人脸 验证 • 扩展了物理安全控制的 应用领域 • 客人对VIP 设施的使用 • 在线考试以及民意调查 时的用户验证 人脸识别 通过针对存储的面部向量的集合找到输入面部图像的最接近 的匹配来识别图像中的人 •
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    • 数据  海量数据: 美团的亿级用户、千万级POI • 特征  大规模离散特征 > 小规模泛化特征 • 模型  DNN > 树模型 > LR 美团超大规模模型应用场景 • 可扩展的机器学习架构  基于Parameter Server架构  数据并行 —— 支持超大规模训练集  模型并行 —— 支持超大规模模型 • 业界千亿级以上的机器学习平台  开源: PaddlePaddle、XDL,etc Entropy、etc • 评估指标  AUC、Loss、MAE、RMSE  支持外部eval工具,计算MAP、NDCG MLX的模型能力 • 提供离线、近线、在线全流程解决方案,各阶段提供扩展方案,降低算法迭代成本; • 支持Online Learning,提供从近线到在线的模型数据通路; • 提供从召回到排序全流程的模型解决方案,为业务提供最佳实践; • 提供系统的平台化工具,为用户提供易用的界面操作;  与PS通信交换模型参数  计算图的计算 • 计算图框架Graph  计算逻辑抽象op,通过op组合形成模型结构  提供正向(forward)、反向(backward)、Loss的操作扩展 模型训练框架 • 模型可变计算路径  运行阶段  计算图裁剪 模型训练框架 • 应用场景——离线预计算  模型召回,ANN检索  粗排模型,降低线上计算量 • 分布式Sharding
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
  • pdf文档 pytorch 入门笔记-03- 神经网络

    链滴 pytorch 入门笔记 -03- 神经网络 作者:zyk 原文链接:https://ld246.com/article/1639540087993 来源网站:链滴 许可协议:署名-相同方式共享 4.0 国际 (CC BY-SA 4.0) 前言 本节主要内容是如何使用 torch.nn 包来构建神经网络。 上一讲已经讲过了 autograd,nn 包依赖 autograd
    0 码力 | 7 页 | 370.53 KB | 1 年前
    3
共 28 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
PyTorch深度学习AI模型千问qwen中文文档动手深度学习v2TensorFlow快速入门实战房价预测商品识别使用ResNet货架检测RetinaNet瞄准onYarn遇上数据亚马亚马逊AWSAIServicesOverview超大大规规模大规模超大规模美团应用建平pytorch笔记03神经网络神经网神经网络
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩