动手学深度学习 v2.0Kaggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 4.10.3 访问和读取数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 4.10.4 数据预处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.2.1 参数访问 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 5.2.2 参数初始化 这些目标经常是相互冲突的。公式、定理和引用最好用LaTeX来管理和布局。代码最好用Python描述。网页 原生是HTML和JavaScript的。此外,我们希望内容既可以作为可执行代码访问、作为纸质书访问,作为可下 载的PDF访问,也可以作为网站在互联网上访问。目前还没有完全适合这些需求的工具和工作流程,所以我 们不得不自行组装。我们在 16.5节 中详细描述了我们的方法。我们选择GitHub来共享源代码并允许编辑,选0 码力 | 797 页 | 29.45 MB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱User与推荐系统交互,7*24⼩时 流式学习 1.2 Item和User新增,离开/遗忘, Embedding空间动态变化。 短期命中的⾼频key随时间缓慢变化 少量的⾼频key占据了主要访问需求 ⼀段时间样 本命中的 unique key ID/tag/交叉特征 (全量为:亿,千亿) ⼩特征 (个) 中型特征 (百) ID/tag/交叉特征 (千,千万) ⼩特征 (个) 热⻔⽂章的特征,活跃⽤户的特征 推荐系统 模型上线 在线推理 模型训练 ⽂章 新闻 视频 Item User Item特征 ⽤户反馈 Item推荐 Embedding参数 本⼩时访问过的key 上⼩时访问过的key 访 问 百 分 ⽐ 时间(⼩ 时) � Feature 2(数据的时空特点) 2.1 短时间内只有部分item和user被 命中,只有部分参数被⽤到 � Feature GPU多线程并⾏计算能⼒对稀疏数据不友好 � ⽅案 � 原有:内存能够存储的参数->对应的样本量Group � 新增:显存能够存储的参数->对应的样本量Pass � 新增:GPU并⾏操作友好->CSR格式的显存数据访问 SSD磁盘 10TB 全部参数 内存 1TB 即将⽤到的参数 显存 32/40/80GB 正在训练的参数 分布式训练的慢机与同步问题 � Feature 2.1: 短时间内只有部分item和user被命中,0 码力 | 22 页 | 6.76 MB | 1 年前3
AI大模型千问 qwen 中文文档; • 对基础模型和 Chat 模型的多语言支持 • 基础模型和聊天模型都支持多种语言; • 支持工具调用、RAG(检索增强文本生成)、角色扮演、AI Agent 等; 想了解更多信息,欢迎访问: • 博客 • GitHub • Hugging Face • ModelScope • Qwen1.5 Collection 加入社区,加入 Discord 和 微信群 。很期待见到你们! 操作系统。现在, Qwen1.5 正式上线 Ollama,您只需一条命令即可运行它: ollama run qwen 接着,我们介绍在 Ollama 使用 Qwen 模型的更多用法 1.5.1 快速开始 访问官方网站 Ollama ”,点击 Download 以在您的设备上安装 Ollama。您还可以在网站上搜索模型,在这里 您可以找到 Qwen1.5 系列模型。除了默认模型之外,您可以通过以下方式选择运行不同大小的 gguf q2_ �→k 我们现在提供了以下量化级别的 GGUF 模型:q2_k 、q3_k_m 、q4_0 、q4_k_m 、q5_0 、q5_k_m 、q6_k 和 q8_0 。欲了解更多信息,请访问 llama.cpp 。 1.10 vLLM 我们建议您在部署 Qwen 时尝试使用 vLLM 。它易于使用,且具有最先进的服务吞吐量、高效的注意力键值 内存管理(通过 PagedAttention0 码力 | 56 页 | 835.78 KB | 1 年前3
《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别一起开发和维护的一款分叉自 PIL 的图像工具库。 至今,社区依然非常活跃,Pillow 仍在快速迭代。 Pillow提供广泛的文件格式支持,高效的内部表示和相当强大的图像处理功能。 核心图像库旨在快速访问以几种基本像素格式存储的数据, 它应该为一般的图像处理工 具提供坚实的基础。 https://github.com/python-pillow/Pillow captcha Catpcha Flask 启动 验证码识别服务 $ export FLASK_ENV=development && flask run --host=0.0.0.0 打开浏览器访问测试 URL(http://localhost:5000/ping) 访问 验证码识别服务 $ curl -X POST -F image=@2140.png 'http://localhost:5000/predict' 21400 码力 | 51 页 | 2.73 MB | 1 年前3
亚马逊AWSAI Services Overview社交应用、消息类应用 中加入朋友标签 • 协助找到始终人口 • 确定可以访问敏感区域 的员工 • 在历史和媒体的档案中 找到“名人” 应用案例:公共安全领域的智能应用 人工智能的时代已经到来 Amazon AI 服务 • 充分利用了 Amazon 内部在 AI / Ml领域的经验 • 全托管的API 服务,嵌入的AI服务提供了最大的 可访问性和简单性 • 完整的深度学习堆栈,包含了专业的平台、引擎0 码力 | 56 页 | 4.97 MB | 1 年前3
Qcon北京2018-《文本智能处理的深度学习技术》-陈运文更新模型 评分 返回 增强学习优化模块 最优摘要结果 生成式摘要 知识图谱关系抽取:联合学习方法 输入句子 命名实体识别 和关系分类 输出 美国总统特朗普将访问中国。 难点:结构复杂 美国 总统 特朗普 将 访问 中国。 地名 人名 地名 国家-总统 (美国,国家-总统,特朗普) 知识图谱关系抽取:基于深度学习 基于参数共享的方法 对于输入句子通过共用的 word embedding0 码力 | 46 页 | 25.61 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112可满足大部分场合的运 算精度要求,部分对精度要求较高的算法,如某些强化学习算法,可以选择使用 torch.int64 和 torch.float64 精度保存张量。 4.2.1 读取精度 通过访问张量的 dtype 成员属性可以判断张量的保存精度,例如: In [15]: a = torch.tensor(np.pi, dtype=torch.float64) # 64 位 print('before:' # 输出大小 Out[48]: torch.Size([4, 16, 30, 30]) 其中卷积核张量?也是 4 维张量,可以通过 weight 成员变量访问: In [49]: layer.weight.shape # 访问卷积核权值张量 Out[49]: torch.Size([16, 3, 3, 3]) 4.6 索引与切片 通过索引与切片操作可以提取张量的部分数据,它们的使用频率非常高,需要熟练掌 path,即可打开 Web 后端监控进 程,如图 8.2 所示: 图 8.2 启动 Web 服务器 此时打开浏览器,并输入网址 http://localhost:6006 (也可以通过 IP 地址远程访问,具体 端口号可能会变动,可查看命令提示) 即可监控网络训练进度。TensorBoard 可以同时显示 多条监控记录,在监控页面的左侧可以选择监控记录,如图 8.3 所示: 图 8.3 选择监控记录截图0 码力 | 439 页 | 29.91 MB | 1 年前3
李东亮:云端图像技术的深度学习模型与应用20 SACC2017 360电脑安全产品 月活跃数达到4.42亿 360手机安全产品 移动端用户总数已达约1.49亿 360浏览器 月活跃用户数量为3.03亿 360导航 日均独立访问用户为8900万人 日均点击量约为4.51亿次 360搜索 稳定拥有35%以上的市场份额 中国最大的互联网安全公司 360智能硬件 智能摄像头超400万,儿童手表超 350万,行车记录仪超300万0 码力 | 26 页 | 3.69 MB | 1 年前3
深度学习在电子商务中的应用与cluster j的余弦相似度 Random: 生成一个0 – 1之间的随机数 基于词语聚类的矢量化模型 12 • 把搜索词和商品文档各自作为整体看待,直接学习训练各自的矢量值 • 通过分析用户每次访问的行为顺序, 构建有“搜索词”和“商品文档”组成的句子 • 训练集是采用苏宁易购的用户搜索日志作为来源。在经过数据清理之后,按照搜索的 时间顺序,结合商品的点击,商品放入购物车,商品的购买这些用户行为,而建立的0 码力 | 27 页 | 1.98 MB | 1 年前3
机器学习课程-温州大学-01机器学习-引言⚫Jupyter notebook 在cmd环境下,切换到代码的 目录,输入命令: jupyter notebook之后就可以 启动jupyter botebook编辑器 ,启动之后会自动打开浏览器 ,并访问http://localhost:8088 ,默认跳转到 http://localhost:8088/tree 53 ⚫Pycharm https://www.jetbrains.com/pycharm/0 码力 | 78 页 | 3.69 MB | 1 年前3
共 13 条
- 1
- 2













