尚硅谷大数据技术之Hadoop(生产调优手册)–python 人工智能资料下载,可百度访问:尚硅谷官网 尚硅谷大数据技术之 Hadoop(生产调优手 册) (作者:尚硅谷大数据研发部) 版本:V3.3 第 1 章 HDFS—核心参数 1.1 NameNode 内存生产配置 1)NameNode 内存计算 每个文件块大概占用 150byte,一台服务器 128G 内存为例,能存储多少文件块呢? html#concept_fzz_dq4_gbb 具体修改:hadoop-env.sh export HDFS_NAMENODE_OPTS="-Dhadoop.security.logger=INFO,RFAS - Xmx1024m" export HDFS_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS -Xmx1024m" ——————————————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 1.2 NameNode 心跳并发配置 1)hdfs-site.xml The number of Namenode RPC server threads that listen to requests from clients. If0 码力 | 41 页 | 2.32 MB | 1 年前3
尚硅谷大数据技术之Hadoop(入门),检索海量速度慢。 4)学习和模仿Google解决这些问题的办法 :微型版Nutch。 5)可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文) GFS --->HDFS Map-Reduce --->MR BigTable --->HBase 尚硅谷大数据技术之 Hadoop(入门) ——————— 人工智能资料下载,可百度访问:尚硅谷官网 1.5 Hadoop 组成(面试重点) Hadoop1.x、2.x、3.x区别 MapReduce(计算) HDFS(数据存储) Yarn(资源调度) Common(辅助工具) MapReduce (计算+资源调度) HDFS(数据存储) Common(辅助工具) Hadoop1.x组成 Hadoop2.x组成 在 Hadoop1.x 时 代 , Hadoop中的MapReduce同 资 源 的 调 度 , MapReduce 只负 责 运算 。 Hadoop3.x在组成上没 有变化。 1.5.1 HDFS 架构概述 Hadoop Distributed File System,简称 HDFS,是一个分布式文件系统。 HDFS架构概述 1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、 文件权限),以及0 码力 | 35 页 | 1.70 MB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册......................................................................................... 2 1.4 HDFS 架构原理 ............................................................................................ .................................................................................... 5 2.2.4 配置 HDFS-SIZE.XML .................................................................................... 5 实现了一个分布式文件系统(Hadoop Distributed File System),简称 HDFS。HDFS 有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件 上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有 着超大数据集(large data set)的应用程序。HDFS 放宽了(relax)POSIX 的要求, 可以以流的形式访问(streaming0 码力 | 8 页 | 313.35 KB | 1 年前3
Hadoop 概述Hadoop 概述 本章内容提要 ● Hadoop 的组件 ● HDFS、MapReduce、YARN、ZooKeeper 和 Hive 的角色 ● Hadoop 与其他系统的集成 ● 数据集成与 Hadoop Hadoop 是一种用于管理大数据的基本工具。这种工具满足了企 业在大型数据库(在 Hadoop 中亦称为数据湖)管理方面日益增长的 需求。当 Common 是常见工具和库的集合,用于支持其他 Hadoop 模块。和 其他软件栈一样,这些支持文件是一款成功实现的必要条件。而众 所周知的文件系统,Hadoop 分布式文件系统,或者说 HDFS,则是 Hadoop 的核心,然而它并不会威胁到你的预算。如果要分析一组数 据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 并不是你能够应付的任务。建议在尝试安装 Hadoop 之前,你需要 先熟悉此类环境。 1.1.2 Hadoop 分布式文件系统(HDFS) 在 Hadoop Common 安装完成后,是时候该研究 Hadoop Stack 的其余组件了。HDFS(Hadoop Distributed File System)提供一个分布 式文件系统,设计目标是能够运行在基础硬件组件之上。大多数企0 码力 | 17 页 | 583.90 KB | 1 年前3
Hadoop开发指南HOME export HADOOP_YARN_HOME=$HADOOP_HOME export HADOOP_COMMON_HOME=$HADOOP_HOME export HADOOP_HDFS_HOME=$HADOOP_HOME export YARN_HOME=$HADOOP_HOME export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop D_LIBRARY_PATH 让环境⽣效 source /etc/profile或者 source ~/.bashrc 2. HDFS HDFS是⼀个⾼度容错性和⾼吞吐量的分布式⽂件系统。它被设计的易于扩展也易于使⽤,适合海量⽂件的存储。 2.1 HDFS基础操作 基础操作 查询⽂件 Usage: hadoop fs [generic options] -ls [-d] [-h] [-R] [-ignoreCrc] [-crc]... 更多请参考: hadoop fs -help 2.2 WebHDFS WebHDFS提供HDFS的RESTful接⼝,可通过此接⼝进⾏HDFS⽂件操作。使⽤WebHDFS时,客⼾端是先通过Namenode节点获取⽂件所在的Datanode地址,再通过与Datanode节点 进⾏数据交互。 2.2.1 上传⽂件 上传⽂件 0 码力 | 12 页 | 135.94 KB | 1 年前3
通过Oracle 并行处理集成 Hadoop 数据据库中的数据整合在一起以提 取对业务用户有价值的信息。 本文详细介绍了如何从 Oracle 数据库访问存储在 Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 布式存储机制。本文中介绍了各种访问方法,还通过一个具体示例说明了其中一 种访问方法的实现。 2 Oracle 白皮书 — 通过 Oracle 数据库中直接访问 HDFS(Hadoop 文件系统)中存储的 数据。遗憾的是,常规的操作系统无法调用外部表驱动直接访问 HDFS 文件。FUSE(File System in Userspace)项目针对这种情况提供了解决方法。有多种 FUSE 驱动程序支持用户挂 载 HDFS 存储,并将其作为常规文件系统处理。通过使用一个此类驱动程序,并在数据库实 例上挂载 HDFS(如果是 RAC 数据库,则在其所有实例上挂载 数据库,则在其所有实例上挂载 HDFS),即可使用外部表基 础架构轻松访问 HDFS 文件。 图 1. 用数据库内置的 MapReduce 通过外部表进行访问 在图 1 中,我们利用 Oracle Database 11g 实现本文所述的数据库内的 mapreduce。通常情况 下,Oracle Database 11g 中的并行执行框架足以满足针对外部表大多数的并行操作。0 码力 | 21 页 | 1.03 MB | 1 年前3
Hadoop 3.0以及未来开源贡献、基于Intel平台的开源顷目优化以及一些基于Spark的大 规模机器/深度学习顷目。 • 超过9年的互联网、云计算、大数据的工作经验。 概要 • Hadoop的历叱 • Hadoop 3介绍 Common HDFS YARN MapReduce • Hadoop的未来发展方向 Hadoop的历叱 2004 2005 2012 2007 2008 2009 2010 2011 2006 2013 Hadoop生态系统 文件存储层 HDFS 资源/任务调度 YARN 计算引擎MapReduce 计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习 Batch 任务 流处理 搜索 … Kafka Hadoop 3介绍 • Common JDK 8+ 升级 Classpath隔离 Shell脚本的重构 • HDFS • YARN • MapReduce MapReduce Classpath隔离 • HADOOP-11656, HDFS-6200 问题:依赖性地狱(Dependency Hell),版本冲突 解决方案:客户端(client-side)和服务器端(server-side)的隔离 Shell脚本的重构 - HADOOP-9902 • 脚本重构,提升可维护性和易用性 • 修正一些长期存在的bugs • 加入一些改进 • 加入一些新功能0 码力 | 33 页 | 841.56 KB | 1 年前3
這些年,我們一起追的Hadoop只有一個 JobTracker (Master),可是要管理多個 TaskTracker (Slave)! 10 / 74 Hadoop 1.x 架構與限制 比較基本的模組: Hadoop HDFS (Storage) Hadoop MapReduce (Computing Engine + Resource Management + Job Scheduling / Monitoring + .) 比較明顯的限制: 每個 Cluster 大概就是 4,000 - 4,500 個 Node JobTracker 是架構瓶頸,Concurrent Task 大概是 40,000 上下 HDFS 只能有一個 Namespace,沒辦法分開管控 /sales、/accounting、... 只能執行 MapReduce Job ... 弱弱的問一下:台灣有多少企業 Cluster 有這麼大?Task I/O Overhead 太高,但是彼此之間又沒有交集 Hadoop 掌握所有資料 (HDFS),但是只有一種玩法 (MapReduce)? 12 / 74 改造好呢?還是放棄好呢? 13 / 74 進擊的 Hadoop 14 / 74 改造 MapReduce Hadoop 掌握所有資料 (HDFS),但是提供多種玩法 (YARN)! 希望把 Hadoop 從 Batch 應用變成0 码力 | 74 页 | 45.76 MB | 1 年前3
大数据集成与Hadoop - IBMDistributed File System (HDFS))和并 行处理框架(称为MapReduce)。 HDFS平台十分适合处理大型顺序操作,其中的数据读取“切 片”通常为64MB或128MB。通常情况下,除非应用程序加载 数据来管理相关任务,否则不会对HDFS文件进行分区或排 序。即使应用程序可以对生成的数据切片进行分区和排序, 也无法保证数据切片在HDFS系统中的位置正确。这意味着, 无法 数据整合到相同的节点,因此该流程不仅性能高,而且很准确。 虽然有很多方法可以应对数据并置支持缺乏的问题,但费用往 往十分昂贵-通常需要额外的应用程序处理和/或重建工作。 另外,HDFS文件不可更改(只读),处理HDFS文件类似于运 行全表扫描,往往需要处理全部数据。对于像联接两个超大 表这样的操作应该发出危险信号,因为没有将数据并置到同一 Hadoop节点。 MapReduce V1是一个并行处理框架,并非用于高性能处理 非MapReduce)中继续运行数据集成处理的重要部分。采 用这种做法有以下几个原因: • 较为复杂的逻辑无法推送到MapReduce • MapReduce具有很大的性能局限性 • 通常数据按随机顺序方式存储到HDFS中 所有这些因素表明,在Hadoop环境中执行大数据集成需要 以下三个组件来实现高性能的工作负载处理: 1)Hadoop发行版 2)非共享大规模可扩展ETL平台(如IBM InfoSphere0 码力 | 16 页 | 1.23 MB | 1 年前3
大数据时代的Intel之HadoopPig 0.9.2 数据流处理语言 Mahout 0.6 数据挖掘 HBase 0.94.1 实时、分布式、高维数据库 Map/Reduce 1.0.3 分布式计算框架 HDFS 1.0.3 分布式文件系统 R 统计语言 Intel Hadoop Manager – 安装、配置、管理、监控、告警 英特尔Hadoop性能优化 测试配置 性能数 将图片存入HBase,引起大量的compaction • 将图片存入HDFS,管理使用麻烦 IDH引入了表外存储以解决大对象的高效存储问题 • 类似Oracle的BLOB存储 • 对用户透明 • 2X以上的写入性能,还有迚一步提升的空间 • 2X的随机访问性能 • 1.3X的Scan性能 • 接近直接写入HDFS性能 Interactive Hive over HBase HBase 可通过Hive来访问HBase,迚行SQL查询 • 使用MapReduce来实现 • 比Hive访问HDFS慢3~5倍 IDH引入了Interactive Hive over HBase • 完全的Hive支持:常用功能(select, group-by等)用HBase coprocessor 实现,其余功能用MapReduce实现,无缝连接 • 去除了MapReduce的overhead,大大减少了数据传输0 码力 | 36 页 | 2.50 MB | 1 年前3
共 13 条
- 1
- 2













