大数据时代的Intel之HadoopModel, 2006–2015 (PB) 全球 2012 年产生2.7 ZB(1,000,000 PB)数据, 2015 年150亿部接入设备 大数据时代的数据 2011年每天处理的数据超 过: 24 PB 2011年6月乊前, Facebook平台每天分享资 料: 40亿 智慧城市数据 中国某一线城市: 200PB/季度 中国一线城市健康档案数 据: 5.5 million GB -> TB TB -> PB以上 数据量稳定,增长不快 持续实时产生数据, 年增长率超过60% 主要为结构化数据 半结构化,非结构化, 多维数据 ―大数据‖ 挃数据集的大小超过了现有典型的数据库软件和工具的处理能力。不此同时,及时捕捉、 存储、聚合、管理这些大数据以及对数据的深度分析的新技术和新能力,正在快速增长,就像预 测计算芯片增长速度的摩尔定律一样。0 码力 | 36 页 | 2.50 MB | 1 年前3
這些年,我們一起追的HadoopWhat is BigQuery, Its Features and Some Successful Products Who Got Benefited from It? 54 / 74 超級(女)英雄們也是有分派系的! Hadoop 小圈圈 55 / 74 Cloudera 派: Intel (金主) DataBricks (Spark 平台) IBM Oracle MapR0 码力 | 74 页 | 45.76 MB | 1 年前3
Hadoop 概述的组件可以帮助你处理这些大 型数据存储。 类似 Google 这样的商业公司可使用 Hadoop 来操作、管理其数 据存储并从中产生出有意义的结果。通常用于商业分析的传统工具 并不旨在处理或分析超大规模数据集,但 Hadoop 是一个适用于这 些商业模型的解决方案。 1.1.1 Hadoop 的组件 Hadoop Common 是 Hadoop 的基础,因为它包含主要服务和基 本进程,例如对 Machine,VM)或笔记本电脑上完成初始配置,而且可以升级到服务 器部署。它具有高度的容错性,并且被设计为能够部署在低成本的 硬件之上。它提供对应用程序数据的高吞吐量访问,适合于面向大 型数据集的应用程序。 在任何环境中,硬件故障都是不可避免的。有了 HDFS,你的 数据可以跨越数千台服务器,而每台服务器上均包含一部分基础数 据。这就是容错功能发挥作用的地方。现实情况是,这么多服务器 的设计针对批处理做了优化,它提供高吞吐量的数据访 问,而非低延迟的数据访问。运行在 HDFS 上的应用程序有着大型 数据集。在 HDFS 中一个典型的文件大小可以达到数百 GB 或更大, 所以 HDFS 显然支持大文件。它提供高效集成数据带宽,并且单个 群集可以扩展至数百节点。 Hadoop 是一个单一功能的分布式系统,为了并行读取数据集并 提供更高的吞吐量,它与群集中的机器进行直接交互。可将 Hadoop 想象为一个动力车间,它让单个0 码力 | 17 页 | 583.90 KB | 1 年前3
Spark 简介以及与 Hadoop 的对比1 弹性分布数据集(RDD) RDD 是 Spark 的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式 来操作分布式数据集的抽象实现。RDD 是 Spark 最核心的东西,它表示已被分区,不可变的 并能够被并行操作的数据集合,不同的数据集格式对应不同的 RDD 实现。RDD 必须是可序 列化的。RDD 可以 cache 到内存中,每次对 RDD 数据集的操作之后的结果,都可以存放到 In-Memory 类数据库或 Cache 类系统中也有实 现,Spark 的主要区别在于它处理分布式运算环境下的数据容错性(节点实效/数据丢失)问 题时采用的方案。为了保证 RDD 中数据的鲁棒性,RDD 数据集通过所谓的血统关系(Lineage) 记住了它是如何从其它 RDD 中演变过来的。相比其它系统的细颗粒度的内存数据更新级别的 备份或者 LOG 机制,RDD 的 Lineage 记录的是粗颗粒度的 的中间数据放到内存中,对于迭代运算效率更高。Spark 更适合于迭代运算比较多 的 ML 和 DM 运算。因为在 Spark 里面,有 RDD 的抽象概念。 2.2 灵活 1. Spark 提供的数据集操作类型有很多种,不像 Hadoop 只提供了 Map 和 Reduce 两种操 作。比如 map, filter, flatMap, sample, groupByKey, reduceByKey0 码力 | 3 页 | 172.14 KB | 1 年前3
大数据集成与Hadoop - IBMHadoop技术通过支持新的流程和架构,不断改进 大数据措施的经济性和活力,这样不仅有助于削减成本、增加 收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 并可根据需求变化从单一服务器扩展到数以千计的服务器。主 要的Hadoop组件包括Hadoop Distributed File System (用于存储大型文件)和Hadoop分布式并行处理框架(称为 并行架构。它们依靠共享的内存多线程,而非软件数据流。 此外,有些供应商不支持将大数据集分散在多个节点间,无法对 独立数据分区并行运行单一数据集成作业,也无法实现设计一 次作业,无需重新设计和重新调整作业即可在任何硬件配置中 非共享架构 从头开始创建软件,以便 利用非共享的大规模并行 架构,方法是将数据集分 散到多个计算节点,执行 单一应用程序(对每个数 据分区执行相同的应用程 序逻辑)。 个或多个节点实施和执行 数据管道和数据分区的过 程,从而充分利用非共享 架构。软件数据流还可以 将构建和优化多位用户运 行的并行应用程序的复杂 问题隐藏起来。 利用数据分区实现线性 数据可扩展性 大数据集分散在多个独立 节点间,单个作业对所有 分区数据执行相同的应用 程序逻辑。 形成设计隔离的环境 设计一个数据处理作业, 并且无需重新设计和重新 调整作业,即可在任何硬 件配置中使用它。 使用它。0 码力 | 16 页 | 1.23 MB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案数据存储:面向海量数据存储的分布式文件存储服务,支持 结构化数据和非结构数据数据存 储,我们也常称之为数据湖。如 HDFS、对象存储服务等。 批处理:由于大数据场景必须处理大规模的数据集,批处理往往需要从数据存储中读取大量 数据进 行长 时间 处理 分析 ,并将 处理 后的 数据 写 入 新的 数据 对象 供后 续使 用。如 Hive、 MapReduce、Spark 等。 Alibaba PERFORMANCE (MB/s): 58.82 Alibaba Cloud MaxCompute 解决方案 28 6.3.2 资源评估 评 估 系 统 会 根 据 客 户 的 集 群 规 模 、 服 务 器 配 置 、 数 据 量 和 作 业 量 等 信 息 , 估 算 出 在 MaxCompute 相应的资源购买规格建议:1)计费模式:预付费/后付费;2)规格:CU 数和0 码力 | 59 页 | 4.33 MB | 1 年前3
Hadoop开发指南op=DELETE&user.name=root" 2.4 MapReduce Job 以terasort为例,说明如何提交⼀个MapReduce Job ⽣成官⽅terasort input数据集 hadoop jar /home/hadoop/hadoop-examples.jar teragen 100 /tmp/terasort_input 提交任务 hadoop jar /hom0 码力 | 12 页 | 135.94 KB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册System),简称 HDFS。HDFS 有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件 上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有 着超大数据集(large data set)的应用程序。HDFS 放宽了(relax)POSIX 的要求, 可以以流的形式访问(streaming access)文件系统中的数据。 Hadoop 的框架最核心的设计就是:HDFS0 码力 | 8 页 | 313.35 KB | 1 年前3
通过Oracle 并行处理集成 Hadoop 数据步是出队过程,这是通过数据库中的表函数并行调用来实现的。这些并行调用处 理得到的数据将会提供给查询请求来使用。表函数同时处理Oracle数据库的数据和来自队列 中的数据,并将来自两个来源的数据整合为单一结果集提供给最终用户。 图 4. 监控进程 Hadoop的进程 (mapper) 启动之后,作业监控器进程将监视启动程序脚本。一旦mapper 完成 Hadoop 集群中数据的处理之后,bash0 码力 | 21 页 | 1.03 MB | 1 年前3
共 9 条
- 1













