积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(8)Hadoop(8)

语言

全部中文(简体)(7)中文(繁体)(1)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 8 个.
  • 全部
  • 云计算&大数据
  • Hadoop
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 大数据集成与Hadoop - IBM

    集成导致难以在整个企业中实现数据治理。 14 大数据集成与 Hadoop 建立世界级数据治理机制至关重要,并为所有关键数据资产 (包括Hadoop环境,但不仅限于此)创建完全受治理的数 据生命周期。以下是创建全面数据生命周期的建议步骤: • 查找:利用条款、标记和集合来查找接受治理和监管的 数据源 • 监管:为相关资产添加标记、条款和自定义属性 • 收集:通过收集来捕获资产,并开展具体的分析或治理 基于Web的集成式安装程序,用于执行所有功能 • 高可用性配置,用于满足全天候需求 • 灵活的部署选项,用于部署新实例或展开经过优化的专 家硬件系统上的现有实例 • 集中实现身份验证、授权和会话管理 • 审核安全相关事件的日志记录,推动满足《萨班斯奥克 斯利法案》合规性要求 • 实验室认证,针对各种Hadoop发行版 IBM软件 15 大数据集成最佳实践为成功奠定了坚实的基础 企业正在纷纷转向大数据措施,期望帮助自己削减成本、提高收
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
  • pdf文档 這些年,我們一起追的Hadoop

    / 74 Cloudera 派: Intel (金主) DataBricks (Spark 平台) IBM Oracle MapR ... Hortonworks 派: Microsoft (生命共同體) ... 56 / 74 意見分歧?殊途同歸? Hive vs. Impala Did Cloudera Just Shoot Their Impala? Cloudera 一年多前希望最終能夠取代
    0 码力 | 74 页 | 45.76 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    all nodes. NameNode 有一个工作线程池,用来处理不同 DataNode 的并发心跳以及客户端并发 的元数据操作。 对于大集群或者有大量客户端的集群来说,通常需要增大该参数。默认值是 10。 dfs.namenode.handler.count 21 namenode.handler.count=20 × ??????????? ????,比如集群规模(DataNode 台 数)为 3 台时,此参数设置为 21。可通过简单的 python 代码计算该值,代码如下。 [atguigu@hadoop102 ~]$ sudo yum install -y python [atguigu@hadoop102 ~]$ python Python 2.7 人工智能资料下载,可百度访问:尚硅谷官网 2)开启回收站功能参数说明 (1)默认值 fs.trash.interval = 0,0 表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值 fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为 0,则该 值设置和 fs.trash.interval 的参数值相等。 (3)要求 fs.trash
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
  • pdf文档 大数据时代的Intel之Hadoop

    Hadoop研发团队 推劢产业应用 交通指挥的挑战 ——典型中国二线城市 • 机劢车的迅速增加 • 复杂数据分析 • 数据挖掘不预测 • 突发事件应对 • 公众服务 • 公众访问高幵发 • 其他系统亏连 面对快速增长的数据,如何满足交通挃挥要求? 0 500,000 1,000,000 1,500,000 2,000
    0 码力 | 36 页 | 2.50 MB | 1 年前
    3
  • pdf文档 Hadoop 概述

    第 1 章 Hadoop 概述 3 例如,让我们考虑类似 Google、Bing 或者 Twitter 这样的大型 数据存储。所有这些数据存储都会随着诸如查询和庞大用户基数等 活动事件而呈现出指数增长。Hadoop 的组件可以帮助你处理这些大 型数据存储。 类似 Google 这样的商业公司可使用 Hadoop 来操作、管理其数 据存储并从中产生出有意义的结果。通常用于商业分析的传统工具
    0 码力 | 17 页 | 583.90 KB | 1 年前
    3
  • pdf文档 银河麒麟服务器操作系统V4 Hadoop 软件适配手册

    输入的键值对会被转换成零到多个键值对输出。其中输入和输出的键必须完全不 同,而输入和输出的值则可能完全不同。  reduce: 某个键的所有键值对都会被分发到同一个 reduce 操作中。确切的说,这个键 和这个键所对应的所有值都会被传递给同一个 Reducer。reduce 过程的目的是将值的集合转换成一个值(例如求和或者求平均),或者转换成另 一个集合。这个 Reducer 最终会产生一个键值对。需要说明的是,如果
    0 码力 | 8 页 | 313.35 KB | 1 年前
    3
  • pdf文档 Spark 简介以及与 Hadoop 的对比

    大量的磁盘 IO 操作。这对 于迭代运算比较常见的机器学习算法, 交互式数据挖掘来说,效率提升比较大。 1.2.2 RDD 的转换与操作 对于 RDD 可以有两种计算方式:转换(返回值还是一个 RDD)与操作(返回值不是一个 RDD) 1. 转换(Transformations) (如:map, filter, groupBy, join 等),Transformations 操作是 Lazy
    0 码力 | 3 页 | 172.14 KB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(入门)

    ResourceManager NodeManager NodeManager 2)配置文件说明 Hadoop 配置文件分两类:默认配置文件和自定义配置文件,只有用户想修改某一默认 配置值时,才需要修改自定义配置文件,更改相应属性值。 (1)默认配置文件: 要获取的默认文件 文件存放在 Hadoop 的 jar 包中的位置 [core-default.xml] hadoop-common-3
    0 码力 | 35 页 | 1.70 MB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
大数集成HadoopIBM這些我們一起硅谷技术生产调优手册时代Intel概述银河麒麟服务务器服务器操作系统操作系统V4软件适配Spark简介以及对比入门
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩