尚硅谷大数据技术之Hadoop(入门)1)Hadoop创始人Doug Cutting,为了实现与Google类似的全文搜索功能,他在Lucene框架基础上进行优 化升级,查询引擎和索引引擎。 Hadoop创始人Doug Cutting 2)2001年年底Lucene成为Apache基金会的一个子项目。 3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。 4)学习和模仿Google解决这些问题的办法 Hadoop 三大发行版本:Apache、Cloudera、Hortonworks。 Apache 版本最原始(最基础)的版本,对于入门学习最好。2006 Cloudera 内部集成了很多大数据框架,对应产品 CDH。2008 Hortonworks 文档较好,对应产品 HDP。2011 Hortonworks 现在已经被 Cloudera 公司收购,推出新的品牌 CDP。 –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 4)Spark:Spark 是当前最流行的开源大数据内存计算框架。可以基于 Hadoop 上存储的大数 据进行计算。 5)Flink:Flink 是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。 6)Oozie:Oozie 是一个管理 Hadoop 作业(job)的工作流程调度管理系统。 7)Hbase:HBase0 码力 | 35 页 | 1.70 MB | 1 年前3
 Hadoop 迁移到阿里云MaxCompute 技术方案................................................................................. 20 5.3 阶段 3:并行测试,割接 ............................................................................................... Alibaba Cloud MaxCompute 解决方案 6 1 概要 Hadoop 在企业构建第一代大数据平台中成为主流的技术框架,但是随着企业信息化的高 速发展,在数字化、智能化的转型过程中,Hadoop 越来越复杂的技术架构和运维成本、平台 的稳定性和安全性、资源的弹性伸缩能力都遇到了瓶颈,严重阻碍了客户数据业务的发展。随着 提供了 Spark on MaxCompute 的解决 方案,使 MaxCompute 提供的兼容开源的 Spark 计算 服务,让它在统一的计算资源和数据集权限体系之上,提 供 Spark 计算框架,支持用户以熟悉的开发使用方式提 交运行 Spark 作业。 * 支持原生多版本 Spark 作业:Spark1.x/Spark2.x 作业 都可运行; * 开源系统的使用体验:Spark-submit0 码力 | 59 页 | 4.33 MB | 1 年前3
 银河麒麟服务器操作系统V4 Hadoop 软件适配手册...... 7 3.3 启动 RESOURCEMANAGER 和 NODEMANAGER 守护进程 .......................... 7 4 执行 WORDCOUNT 测试用例 .............................................................................. 7 银河麒麟服务器操作系统 着超大数据集(large data set)的应用程序。HDFS 放宽了(relax)POSIX 的要求, 可以以流的形式访问(streaming access)文件系统中的数据。 Hadoop 的框架最核心的设计就是:HDFS 和 MapReduce。HDFS 为海量的数 据提供了存储,而 MapReduce 则为海量的数据提供了计算。 1.4 HDFS 架构原理 HDFS 是 Hadoop 个的、可以在服务器集群中并行执行的任务,而这些任务的计算结果可以合并在 一起来计算最终的结果。简而言之,Hadoop Mapreduce 是一个易于编程并且能在 大型集群(上千节点)快速地并行得处理大量数据的软件框架,以可靠,容错的 方式部署在商用机器上。MapReduce 这个术语来自两个基本的数据转换操作:map 过程和 reduce 过程。  map: map 操作会将集合中的元素从一种形式转化成另一种形式,在这种情况下,0 码力 | 8 页 | 313.35 KB | 1 年前3
 大数据时代的Intel之Hadoopp://www.intel.com/design/literature.htm 性能测试和等级评定均使用特定的计算 机系统和/戒组件迚行测量,这些测试大致反映了英特尔® 产品的性能。系统硬件、软件设计戒配置的仸何差异都可能影响实际性能。购买者应迚行多方咨询,以评估其考虑购买的系统戒组 件的性能。如欲了解有关性能测试和英特尔产品性能的更多信息,请访问:英特尔性能挃标评测局限 此处涉及的所有产品 实时、分布式、高维数据库 Map/Reduce 1.0.3 分布式计算框架 HDFS 1.0.3 分布式文件系统 R 统计语言 Intel Hadoop Manager – 安装、配置、管理、监控、告警 英特尔Hadoop性能优化 测试配置  性能数据在8台英特尔至强服务器组成的小规模集群上测试得到  服务器配置:6核Intel E5 CPU, 48GB内存,8块 48GB内存,8块 7200rpm SATA硬盘, 千兆以太网 测试用例和性能  向HBase集群插入1KB大小的记录  每台服务器平均每秒插入1万条记录,峰值在2万条记录  每台服务器,从磁盘扫描数据,每秒完成400个扫描。 一次扫描从HBase表中获得单个用户一个月内的所有记录(平均100条) 0 0.2 0.4 0.6 0.8 1 ren 0 0 100000 码力 | 36 页 | 2.50 MB | 1 年前3
 通过Oracle 并行处理集成 Hadoop 数据下,Oracle Database 11g 中的并行执行框架足以满足针对外部表大多数的并行操作。 在有些情况下(例如,如果 FUSE 不可用),外部表方法可能不适用。Oracle 表函数提供了 从 Hadoop 中获取数据的替代方法。本文附带的示例展示了一种这样的方法。更深入地来 讲,我们用一个表函数来实现,这个表函数使用 DBMS_SCHEDULER 框架异步调用外部shell 脚本,然后由这个shell脚本提交一个Hadoop 数据 示例代码 图3 至 图 5 实现的解决方案使用以下代码。所有的代码均在 Oracle Database 11g 和 5 个节点 的 Hadoop 集群上进行过测试。与大多数白皮书一样,请将这些脚本复制到文本编辑器中并 确保格式正确。 处理数据的表函数 该脚本中包含某些设置组件。例如,脚本开始的部分创建了图 3 中第 1 步所展示的仲裁表。0 码力 | 21 页 | 1.03 MB | 1 年前3
 Hadoop 概述Hadoop 并不被认为是一种关系型数据库管理系统 (RDBMS),但其仍能与 Oracle、MySQL 和 SQL Server 等系统一起 工作。这些系统都已经开发了用于对接 Hadoop 框架的连接组件。 我们将在本章介绍这些组件中的一部分,并且展示它们如何与 Hadoop 进行交互。 1.1 商业分析与大数据 商业分析通过统计和业务分析对数据进行研究。Hadoop 允许你 1.4 YARN 是什么 YARN 基础设施(另一个资源协调器)是一项用于提供执行应用 程序所需的计算资源(内存、CPU 等)的框架。 YARN 有什么诱人的特点或是性质?其中两个重要的部分是资 源管理器和节点管理器。让我们来勾勒 YARN 的框架。首先考虑一 个两层的群集,其中资源管理器在顶层(每个群集中只有一个)。资 Hadoop 大数据解决方案 6 源管理器是主 施的从节点。当开始运行时,它向资源管理器声明自己。此类节点 有能力向群集提供资源,它的资源容量即内存和其他资源的数量。 在运行时,资源调度器将决定如何使用该容量。Hadoop 2 中的 YARN 框架允许工作负载在各种处理框架之间动态共享群集资源,这些框 架包括 MapReduce、Impala 和 Spark。YARN 目前用于处理内存和 CPU,并将在未来用于协调其他资源,例如磁盘和网络 I/O。0 码力 | 17 页 | 583.90 KB | 1 年前3
 大数据集成与Hadoop - IBM并可根据需求变化从单一服务器扩展到数以千计的服务器。主 要的Hadoop组件包括Hadoop Distributed File System (用于存储大型文件)和Hadoop分布式并行处理框架(称为 MapReduce)。 但是,Hadoop基础架构本身并没有提供完整的大数据集成解 决方案,摆在人们面前的既有挑战,也有机遇,只有处理好这些 问题,才能安享各项优势,最大限度提高投资回报率 一个环境内运行它。 最适合Hadoop的流程 Hadoop 平台由以下两个主要组件构成:分布式容错文件系统 (称为Hadoop Distributed File System (HDFS))和并 行处理框架(称为MapReduce)。 HDFS平台十分适合处理大型顺序操作,其中的数据读取“切 片”通常为64MB或128MB。通常情况下,除非应用程序加载 数据来管理相关任务,否则不会对HDFS文件进行分区或排 HDFS文件类似于运 行全表扫描,往往需要处理全部数据。对于像联接两个超大 表这样的操作应该发出危险信号,因为没有将数据并置到同一 Hadoop节点。 MapReduce V1是一个并行处理框架,并非用于高性能处理 大型ETL工作负载。默认情况下,可在映射之间重新划分或重新 并置数据,并减少处理阶段的时间。为加快恢复操作,可以先将 数据保存到运行映射操作的节点,再进行随机选择和发送以减0 码力 | 16 页 | 1.23 MB | 1 年前3
 尚硅谷大数据技术之Hadoop(生产调优手册)后台拉取过来的数据,需要多久能上传到集群?消费者 关心多久能从 HDFS 上拉取需要的数据? 为了搞清楚 HDFS 的读写性能,生产环境上非常需要对集群进行压测。 HDFS 的读写性能主要受网络和磁盘影响比较大。为了方便测试,将 hadoop102、 hadoop103、hadoop104 虚拟机网络都设置为 100mbps。 100Mbps 单位是 bit;10M/s 单位是 byte ; 1byte=8bit,100Mbps/8=12 –python 人工智能资料下载,可百度访问:尚硅谷官网 测试网速:来到 hadoop102 的/opt/module 目录,创建一个 [atguigu@hadoop102 software]$ python -m SimpleHTTPServer 2.1 测试 HDFS 写性能 0)写测试底层原理 1)测试内容:向 HDFS 集群写 10 个 128M 的文件 [atguigu@hadoop102 的数量,生产环境一般可通过 hadoop103:8088 查看 CPU 核数,设置为(CPU 核数 - 1) ➢ Number of files:生成 mapTask 数量,一般是集群中(CPU 核数-1),我们测试虚 拟机就按照实际的物理内存-1 分配即可 ➢ Total MBytes processed:单个 map 处理的文件大小 ➢ Throughput mb/sec:单个 mapTak 的吞吐量0 码力 | 41 页 | 2.32 MB | 1 年前3
 MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
HDFS (Hadoop Distributed File System) - 跨节点的分布式文件系统 Hadoop Ecosystem 11 Spark Spark是一个流行的开源集群计算框架 • 并行计算引擎 • 使用广义的计算模型 • 基于内存进行计算(内存计算) Spark Core (Batch Processing) 12 MATLAB与Hadoop datastore0 码力 | 17 页 | 1.64 MB | 1 年前3
共 9 条
- 1
 













