银河麒麟服务器操作系统V4 Hadoop 软件适配手册
银河麒麟服务器操作系统 V4 Hadoop 软件适配手册 天津麒麟信息技术有限公司 2019 年 5 月 银河麒麟服务器操作系统 V4 hadoop 软件适配手册 I 目 录 目 录 ............................................................................. .............................. 4 2.2 配置文件修改 ..................................................................................................... 4 2.2.1 配置 HADOOP-ENV.SH ......................... ............................... 4 2.2.2 配置 YARN-ENV.SH ....................................................................................... 5 2.2.3 配置 CORE-SITE.XML ............................0 码力 | 8 页 | 313.35 KB | 1 年前3尚硅谷大数据技术之Hadoop(入门)
2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。 Hadoop102 Hadoop103 Hadoop104 Hadoop105 Hadoop106 双11、618可以动 态增加服务器 Hadoop102 Hadoop103 Hadoop104 Hadoop优势(4高) 3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处 理速度。 4 1)ResourceManager(RM):整个集群资源(内存、CPU等)的老大 3)ApplicationMaster(AM):单个任务运行的老大 2)NodeManager(NM):单个节点服务器资源老大 4)Container:容器,相当一台独立的服务器,里面封装了 任务运行所需要的资源,如内存、CPU、磁盘、网络等。 NodeManager Container NodeManager Container Map Reduce hadoop101 hadoop102 hadoop103 hadoop104 ... ... 520M ss1505_wuma.avi 待分析数据 汇总服务器 MapReduce架构概述 尚硅谷大数据技术之 Hadoop(入门) —————————————————————————————0 码力 | 35 页 | 1.70 MB | 1 年前3尚硅谷大数据技术之Hadoop(生产调优手册)
HDFS—核心参数 1.1 NameNode 内存生产配置 1)NameNode 内存计算 每个文件块大概占用 150byte,一台服务器 128G 内存为例,能存储多少文件块呢? 128 * 1024 * 1024 * 1024 / 150Byte ≈ 9.1 亿 G MB KB Byte 2)Hadoop2.x 系列,配置 NameNode 内存 NameNode NameNode 内存默认 2000m,如果服务器内存 4G,NameNode 内存可以配置 3g。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m 3)Hadoop3.x 系列,配置 NameNode 内存 (1)hadoop-env.sh 中描述 Hadoop 的内存是动态分配的 # The maximum amount ——————————————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 1.2 NameNode 心跳并发配置 1)hdfs-site.xml The number of Namenode RPC server threads that listen to requests from clients0 码力 | 41 页 | 2.32 MB | 1 年前3Hadoop 概述
分布式文件系统,或者说 HDFS,则是 Hadoop 的核心,然而它并不会威胁到你的预算。如果要分析一组数 据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 Hadoop YARN 加入到软件栈中,它是面向大数据应用程序的分布式 操作系统。 ZooKeeper 是另一个 Hadoop Stack 组件,它能通过共享层次名 Hadoop 的脚本。Hadoop Common 包甚至提供了源代码和文档, 以及贡献者的相关内容。如果没有 Hadoop Common,你无法运行 Hadoop。 与任何软件栈一样,Apache 对于配置 Hadoop Common 有一定 要求。大体了解 Linux 或 Unix 管理员所需的技能将有助于你完成配 置。Hadoop Common 也称为 Hadoop Stack,并不是为初学者设计的, Distributed File System)提供一个分布 式文件系统,设计目标是能够运行在基础硬件组件之上。大多数企 业被其最小化的系统配置要求所吸引。此环境可以在虚拟机(Virtual Hadoop 大数据解决方案 4 Machine,VM)或笔记本电脑上完成初始配置,而且可以升级到服务 器部署。它具有高度的容错性,并且被设计为能够部署在低成本的 硬件之上。它提供对应用程序数据的高吞吐量访问,适合于面向大0 码力 | 17 页 | 583.90 KB | 1 年前3大数据集成与Hadoop - IBM
Hadoop技术通过支持新的流程和架构,不断改进 大数据措施的经济性和活力,这样不仅有助于削减成本、增加 收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 并可根据需求变化从单一服务器扩展到数以千计的服务器。主 要的Hadoop组件包括Hadoop Distributed File System (用于存储大型文件)和Hadoop分布式并行处理框架(称为 并行架构。它们依靠共享的内存多线程,而非软件数据流。 此外,有些供应商不支持将大数据集分散在多个节点间,无法对 独立数据分区并行运行单一数据集成作业,也无法实现设计一 次作业,无需重新设计和重新调整作业即可在任何硬件配置中 非共享架构 从头开始创建软件,以便 利用非共享的大规模并行 架构,方法是将数据集分 散到多个计算节点,执行 单一应用程序(对每个数 据分区执行相同的应用程 序逻辑)。 使用软件数据流来实施 数据可扩展性 大数据集分散在多个独立 节点间,单个作业对所有 分区数据执行相同的应用 程序逻辑。 形成设计隔离的环境 设计一个数据处理作业, 并且无需重新设计和重新 调整作业,即可在任何硬 件配置中使用它。 使用它。这些功能对于通过提升效率来降低成本至关重要。没 有它们,该平台将无法处理大量的大数据。 InfoSphere Information Server数据集成产品组合 支持40 码力 | 16 页 | 1.23 MB | 1 年前3大数据时代的Intel之Hadoop
//www.intel.com/design/literature.htm 性能测试和等级评定均使用特定的计算 机系统和/戒组件迚行测量,这些测试大致反映了英特尔® 产品的性能。系统硬件、软件设计戒配置的仸何差异都可能影响实际性能。购买者应迚行多方咨询,以评估其考虑购买的系统戒组 件的性能。如欲了解有关性能测试和英特尔产品性能的更多信息,请访问:英特尔性能挃标评测局限 此处涉及的所有产品、计 com/technology/iamt。 英特尔® 架构上的 64 位计算要求计算机系统采用支持英特尔® 64 架构的处理器、芯片组、基本输入输出系统(BIOS)、操作系统、设备驱劢程序和应用。实际性能会根据您使用的具体 软硬件配置的丌同而有所差异。如欲了解更多信息£¬请不您的系统厂商联系。 没有仸何计算机系统能够在所有情冴下提供绝对的安全性。英特尔® 可信执行技术是由英特尔开发的一项安全技术,要求计算机系统具备英特尔® 虚拟化技术、支持英特尔可信执行技术的 际性能会根据您所使用的具体软硬件配置的丌同而有所差异。有关详细信息,包括哪些处理器支持英特尔 HT 技术,请访问 www.intel.com/products/ht/hyperthreading_more.htm。 英特尔® 虚拟化技术要求计算机系统具备支持英特尔虚拟化技术的英特尔® 处理器、基本输入输出系统、BIOS、虚拟机监视器、VMM、以及用亍某些应用的特定平台软件、功能、性能戒 其它优势会根据软硬件配置的丌同而有所差异,可能需要对0 码力 | 36 页 | 2.50 MB | 1 年前3Hadoop 迁移到阿里云MaxCompute 技术方案
............................................................................... 44 7.1.2 解压工具包,并配置 MaxCompute 连接信息 ................................................................. 45 7.1.3 运行 meta-carrier Tunnel 不暴露文件系统,通过 Tunnel 进行批量数据上传下载。 流式接入 Datahub MaxCompute 配套的流式数据接入服务,粗略地类似 kafka,能够通过简单配置归档 topic 数据到 MaxCompute 表 用户接口 CLT/SDK 统一的命令行工具和 JAVA/PYTHON SDK 开发&诊断 Dataworks/Studio/Logview Hive metadata 4. 结果输出 Alibaba Cloud MaxCompute 解决方案 24 说明:①global.json 是一个全局的配置文件,包含了整个迁移过程中的一些配置,例如将要使用的 MaxCompute 的版本,是否打开 hive compatible 开关等。②每一个 database 会有一个独立的目录, 下面会有每一个表的 table0 码力 | 59 页 | 4.33 MB | 1 年前3Hadoop 3.0以及未来
MapReduce Classpath隔离 • HADOOP-11656, HDFS-6200 问题:依赖性地狱(Dependency Hell),版本冲突 解决方案:客户端(client-side)和服务器端(server-side)的隔离 Shell脚本的重构 - HADOOP-9902 • 脚本重构,提升可维护性和易用性 • 修正一些长期存在的bugs • 加入一些改进 • 加入一些新功能 • 流处理, Batch… Hadoop 3介绍 • Common • HDFS • YARN YARN Timeline Service v.2 YARN Federation 劢态资源配置 容器资源的劢态调整 资源隔离 调度的增强 YARN的Web页面的增强 • MapReduce YARN Timeline Service v.2 • 扩展性 分布式读写 聚合(aggregation) YARN Federation • YARN-2915 允许YARN的集群扩展到一万个戒更多个节点 YARN的集群的集群对用户来说是一个整体的集群 劢态资源配置 • YARN-291 允许劢态的改变NM的资源配置 容器资源的劢态调整 • YARN-1197 允许运行时劢态的调整分配给容器的资源 资源隔离 • 磁盘资源的隔离- YARN-2619 • 网络IO的隔离- YARN-21400 码力 | 33 页 | 841.56 KB | 1 年前3Hadoop开发指南
-r root@master_ip:/home/hadoop/spark /root/ #pig scp -r root@master_ip:/home/hadoop/pig /root/ 修改配置 增加hosts映射,从集群master1节点上拷⻉⽂件夹到UHost: scp root@master_ip:/etc/hosts /tmp/hosts cat /tmp/hosts | grep 使⽤WebHDFS时,客⼾端是先通过Namenode节点获取⽂件所在的Datanode地址,再通过与Datanode节点 进⾏数据交互。 2.2.1 上传⽂件 上传⽂件 UHadoop集群默认配置2个Master节点,同⼀时刻只有⼀个节点Namenode处于Active状态,另⼀个处于Standby状态。下⾯以uhadoop-******-master1的Namenode为Active为例0 码力 | 12 页 | 135.94 KB | 1 年前3這些年,我們一起追的Hadoop
部署在 35,000+ Node 跑了六 個月以上 ... 21 / 74 1. Submit Job 2. 建構特定 AM 3. 向 RM 註冊 AM 4. 送 Request 給 RM 5. 配置啟動 Container 6. AM/Container 溝通 7. Client/AM 溝通 8. 回收 AM Hadoop 2.x 架構 - MapReduce (MRv2) ResourceManager MRv2 的 ResourceManager 就變得非常地 Scalable,撐到 10,000+ Node 也不是問題。又因為 ApplicationMaster 是 Per-Application 配置,所以也不會 變成新的瓶頸。 因為 ApplicationMaster 是 Framework-Specific,所以 ResourceManager 就可以變 成是一個中立的機制,方便支援各種不同0 码力 | 74 页 | 45.76 MB | 1 年前3
共 10 条
- 1