积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)Hadoop(9)

语言

全部中文(简体)(8)西班牙语(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • Hadoop
  • 全部
  • 中文(简体)
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    MaxCompute MR 支持 MapReduce 编程接口(提供优化增强的 MaxCompute MapReduce,也提供高度兼容 Hadoop 的 MapReduce 版本) 不暴露文件系统,输入输出都是表 通过 MaxCompute 客户端工具、Dataworks 提交作业 交互式分析 MaxCompute Lightning MaxCompute 产品的交互式查询服务,特性如下: 环境进行业务对比验证,确定迁移的正确性。 迁移开展时,您可以选择部分试点业务迁移或全量业务进行迁移。对于规模较大的用户,建 议您选择部分试点业务先行进行迁移验证,待迁移验证通过后,再扩展更大的业务范围以降低迁 移风险、提高迁移质量。 5.3 阶段 3:并行测试,割接 迁移完成后,建议基于增量数据与当前系统进行并行测试,待并行一段时间后,对并行测试 结果进行对比验证,符合业务预期即可将业务全部切换至 Dataworks 会自动批量将 Hive SQL 转换成 ODPS SQL,对于不能转换的 SQL,系统会给 出错误提示,需要客户手动修改。 6.5.2 UDF、MR 迁移 支持相同逻辑的 UDF、MR 输入、输出参数的映射转换,但 UDF 和 MR 内部逻辑需要客户自己 维护。【注意】:不支持在 UDF、MR 中直接访问文件系统、网络访问、外部数据源连接。 6.5.3 Spark 作业迁移
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 大数据时代的Intel之Hadoop

    架构的处理器、芯片组、基本输入输出系统(BIOS)、操作系统、设备驱劢程序和应用。实际性能会根据您使用的具体 软硬件配置的丌同而有所差异。如欲了解更多信息£¬请不您的系统厂商联系。 没有仸何计算机系统能够在所有情冴下提供绝对的安全性。英特尔® 可信执行技术是由英特尔开发的一项安全技术,要求计算机系统具备英特尔® 虚拟化技术、支持英特尔可信执行技术的 处理器、芯片组、基本输入输出系统(BIOS)、鉴 处理器、支持超线程(HT)技术的芯片组、基本输入输出系统、BIOS 和操作系统。实 际性能会根据您所使用的具体软硬件配置的丌同而有所差异。有关详细信息,包括哪些处理器支持英特尔 HT 技术,请访问 www.intel.com/products/ht/hyperthreading_more.htm。 英特尔® 虚拟化技术要求计算机系统具备支持英特尔虚拟化技术的英特尔® 处理器、基本输入输出系统、BIOS、虚拟机监 全局虚拟大表,访问方便 大表数据分区存放在物理分中心 接入仸何分中心可访问全局数据 高可用性 适合本地高速写入 分布式聚合计算,避免大数据传输 英特尔Hadoop发行版 – 主要特色 经实际验证的企业级 Hadoop 发行版 •全面测试的企业级发行版,保证长期稳定运行,集成最新开源的和自行开发的补丁,用户可以及时修正漏洞保证各个部件乊间的一致性,使应用顺滑运行 实时数据处理的分布式大数据应用平台
    0 码力 | 36 页 | 2.50 MB | 1 年前
    3
  • pdf文档 Hadoop 概述

    XQuery for Hadoop 运行一个处理流程,它基于 XQuery 语言中表达的转换,将其转化成一系列 MapReduce 作业,这些作业 在 Apache Hadoop 群集上并行执行。输入数据可以位于文件系统上, 通过 Hadoop 分布式文件系统(HDFS)访问,或者存储在 Oracle 的 NoSQL 数据库中。Oracle XQuery for Hadoop 能够将转换结果写入 的大规模企业数据的最佳实 践。企业以及 IT 社区都非常关注各种数据类型的可扩展性。使用 Hadoop,公司便不再局限于昂贵的企业级解决方案或者价格不菲的 数据仓库设备。 Hadoop 并不是大多数组织现有富数据环境的替代品。在考虑使 用 Hadoop 时,也要同样重视其他方面,例如 MapReduce 或 YARN, 它们在做深度数据分析和高级分析方面取得了重大进步。Hadoop 提供对
    0 码力 | 17 页 | 583.90 KB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    Task处于Block状态, 可能是卡住了,也许永远会卡住,为了防止因为用户程序永远Block住 不退出,则强制设置了一个该超时时间(单位毫秒),默认是600000 (10分钟)。如果你的程序对每条输入数据的处理时间过长,建议将 该参数调大。 8)mapreduce.job.reduce.slowstart.completedmaps当MapTask完成的比 例达到该值后才会为ReduceTask申请资源。默认是0 mapreduce.job.ubertask.maxreduces 1 mapreduce.job.ubertask.maxbytes 3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples- 3.1.3.jar sort random-data sorted-data (3)验证数据是否真正排好序了 [atguigu@hadoop102 mapreduce]$ hadoop jar /opt/module/hadoop- 3.1.3/share/hadoop/
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
  • pdf文档 MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖

    MathWorks, Inc. MATLAB与Spark/Hadoop相集成:实现大 数据的处理和价值挖 马文辉 2 内容 ▪ 大数据及其带来的挑战 ▪ MATLAB大数据处理 ➢ tall数组 ➢ 并行与分布式计算 ▪ MATLAB与Spark/Hadoop集成 ➢ MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 ▪ tall arrays ▪ tall array – 一种新的数据类型,专门用于处理大数据. – 用于处理数据规模超过单个机器或群集的内存承载能力的数据集合 ▪ 使用方式等同于MATLAB 数组(array) – 支持数据类型包括数值型、字符串、时间类型、表等… – 支持众多基本的数学函数、统计函数、索引函数等. – 支持机器学习算法包括分类、聚类和回归 7 tall array Memory tall arrays ▪ 自动将数据分解成适合内存的小 “块”(chunk) ▪ 计算过程中,一次处理一个“块”(chunk) 的数据 ▪ 对tall数组(tall array)的编程方式与MATLAB 标准数组 编程方式一致 Single Machine Memory Process 8 ▪ MATLAB本地多核并行计算计 (PCT, Parallel Computing
    0 码力 | 17 页 | 1.64 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(入门)

    4G内存 2CPU 12G内存 6CPU 1.5.3 MapReduce 架构概述 MapReduce 将计算过程分为两个阶段:Map 和 Reduce 1)Map 阶段并行处理输入数据 2)Reduce 阶段对 Map 结果进行汇总 ss.avi yangge.avi bobo.avi ss1505_w uma.avi ... 100T 任务需求:找出宋宋老师2015年5月份的教学视频 [atguigu@hadoop102 hadoop-3.1.3]$ cd wcinput 3)编辑 word.txt 文件 [atguigu@hadoop102 wcinput]$ vim word.txt ➢ 在文件中输入如下内容 hadoop yarn hadoop mapreduce atguigu atguigu ➢ 保存退出::wq 4)回到 Hadoop 目录/opt/module/hadoop-3 尚硅谷大数据技术之 Hadoop(入门) ————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 ➢ 输入 yes,并回车 (3)退回到 hadoop102 [atguigu@hadoop103 ~]$ exit 2)无密钥配置 (1)免密登录原理 免密登录原理 公钥(A) 私钥(A)
    0 码力 | 35 页 | 1.70 MB | 1 年前
    3
  • pdf文档 Spark 简介以及与 Hadoop 的对比

    并能够被并行操作的数据集合,不同的数据集格式对应不同的 RDD 实现。RDD 必须是可序 列化的。RDD 可以 cache 到内存中,每次对 RDD 数据集的操作之后的结果,都可以存放到 内存中,下一个操作可以直接从内存中输入,省去了 MapReduce 大量的磁盘 IO 操作。这对 于迭代运算比较常见的机器学习算法, 交互式数据挖掘来说,效率提升比较大。 1.2.2 RDD 的转换与操作 对于 RDD 可以有两种计算方式:转换(返回值还是一个 的分区依赖于父 RDD 的多个分区或所有分区, 也就是说存在一个父 RDD 的一个分区对应一个子 RDD 的多个分区。对与 Wide Dependencies,这种计算的输入和输出在不同的节点上,lineage 方法对与输入节点完好, 而输出节点宕机时,通过重新计算,这种情况下,这种方法容错是有效的,否则无效,因为 无法重试,需要向上其祖先追溯看是否可以重试(这就是 lineage,血统的意思),Narrow
    0 码力 | 3 页 | 172.14 KB | 1 年前
    3
  • pdf文档 银河麒麟服务器操作系统V4 Hadoop 软件适配手册

    这个术语来自两个基本的数据转换操作:map 过程和 reduce 过程。  map: map 操作会将集合中的元素从一种形式转化成另一种形式,在这种情况下, 输入的键值对会被转换成零到多个键值对输出。其中输入和输出的键必须完全不 同,而输入和输出的值则可能完全不同。  reduce: 某个键的所有键值对都会被分发到同一个 reduce 操作中。确切的说,这个键 和这个键所对应的所有值都会被传递给同一个
    0 码力 | 8 页 | 313.35 KB | 1 年前
    3
  • pdf文档 大数据集成与Hadoop - IBM

    并置数据,并减少处理阶段的时间。为加快恢复操作,可以先将 数据保存到运行映射操作的节点,再进行随机选择和发送以减 少操作。 MapReduce包含多种设施,可将较小的引用数据结构迁 移至各映射节点,以便执行某些验证和增强操作。因此,会将 整个引用文件迁移至各映射节点,这使其更适合较小的引用 数据结构。如果进行手动编码,必须考虑这些处理流,因此 最好采用一些工具来生成代码,从而将数据集成逻辑下推到 MapReduce(也称为ETL 大数据集成的行政管理必须包括: • 基于Web的集成式安装程序,用于执行所有功能 • 高可用性配置,用于满足全天候需求 • 灵活的部署选项,用于部署新实例或展开经过优化的专 家硬件系统上的现有实例 • 集中实现身份验证、授权和会话管理 • 审核安全相关事件的日志记录,推动满足《萨班斯奥克 斯利法案》合规性要求 • 实验室认证,针对各种Hadoop发行版 IBM软件 15 大数据集成最佳实践为成功奠定了坚实的基础
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
Hadoop迁移阿里MaxCompute技术方案大数时代Intel概述硅谷生产调优手册MATLABSpark集成实现数据处理价值入门简介以及对比银河麒麟服务务器服务器操作系统操作系统V4软件适配IBM
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩