大数据集成与Hadoop - IBM
(用于存储大型文件)和Hadoop分布式并行处理框架(称为 MapReduce)。 但是,Hadoop基础架构本身并没有提供完整的大数据集成解 决方案,摆在人们面前的既有挑战,也有机遇,只有处理好这些 问题,才能安享各项优势,最大限度提高投资回报率 (ROI)。 大数据集成对于Hadoop措施的重要性 Hadoop的迅速崛起推动企业在如何抽取、管理、转换、存储和 分析大数据方面实现了范式转变。无论是要更深入的分析,还是 行相同的应用程序并且性能也会随之提高(参见图1)。 关键成功因素:避免炒作,分辨是非 在这些新兴的Hadoop市场阶段,请仔细分辨听到的所有 说明Hadoop卓尔不群的言论。充分使用Hadoop的神话 与现实之间存在巨大的反差,这在大数据集成方面表现尤为 突出。很多业界传言称,任何不可扩展的抽取、转换和加载 (ETL) 工具搭配Hadoop后都会得到高性能、高度可扩展 的数据集成平台。 的数据集成平台。 事实上,MapReduce的设计宗旨并非是对海量数据进行 高性能处理,而是为了实现细粒度的容错。这种差异可能会 使整体性能和有效性降低一个数量级乃至更多。 Hadoop Yet Another Resource Negotiator(YARN) 纳入了MapReduce的资源管理功能,并将它们内置其 中,这样需要在Hadoop群集间动态执行的其他应用即可 使用它们。结果是,这种方法可将大规模可扩展数据集成0 码力 | 16 页 | 1.23 MB | 1 年前3尚硅谷大数据技术之Hadoop(生产调优手册)
在企业中非常关心每天从 Java 后台拉取过来的数据,需要多久能上传到集群?消费者 关心多久能从 HDFS 上拉取需要的数据? 为了搞清楚 HDFS 的读写性能,生产环境上非常需要对集群进行压测。 HDFS 的读写性能主要受网络和磁盘影响比较大。为了方便测试,将 hadoop102、 hadoop103、hadoop104 虚拟机网络都设置为 100mbps。 100Mbps hadoop102 的/opt/module 目录,创建一个 [atguigu@hadoop102 software]$ python -m SimpleHTTPServer 2.1 测试 HDFS 写性能 0)写测试底层原理 1)测试内容:向 HDFS 集群写 10 个 128M 的文件 [atguigu@hadoop102 mapreduce]$ hadoop jar /opt/module/hadoop- 如果实测速度远远小于网络,并且实测速度不能满足工作需求,可以考虑采用固态硬盘 或者增加磁盘个数。 (2)如果客户端不在集群节点,那就三个副本都参与计算 2.2 测试 HDFS 读性能 1)测试内容:读取 HDFS 集群 10 个 128M 的文件 [atguigu@hadoop102 mapreduce]$ hadoop jar /opt/module/hadoop-0 码力 | 41 页 | 2.32 MB | 1 年前3大数据时代的Intel之Hadoop
intel.com/design/literature.htm 性能测试和等级评定均使用特定的计算 机系统和/戒组件迚行测量,这些测试大致反映了英特尔® 产品的性能。系统硬件、软件设计戒配置的仸何差异都可能影响实际性能。购买者应迚行多方咨询,以评估其考虑购买的系统戒组 件的性能。如欲了解有关性能测试和英特尔产品性能的更多信息,请访问:英特尔性能挃标评测局限 此处涉及的所有产品、计算机系统、日期和数 com/technology/iamt。 英特尔® 架构上的 64 位计算要求计算机系统采用支持英特尔® 64 架构的处理器、芯片组、基本输入输出系统(BIOS)、操作系统、设备驱劢程序和应用。实际性能会根据您使用的具体 软硬件配置的丌同而有所差异。如欲了解更多信息£¬请不您的系统厂商联系。 没有仸何计算机系统能够在所有情冴下提供绝对的安全性。英特尔® 可信执行技术是由英特尔开发的一项安全技术,要求计算机系统具备英特尔® 和操作系统。实 际性能会根据您所使用的具体软硬件配置的丌同而有所差异。有关详细信息,包括哪些处理器支持英特尔 HT 技术,请访问 www.intel.com/products/ht/hyperthreading_more.htm。 英特尔® 虚拟化技术要求计算机系统具备支持英特尔虚拟化技术的英特尔® 处理器、基本输入输出系统、BIOS、虚拟机监视器、VMM、以及用亍某些应用的特定平台软件、功能、性能戒 其0 码力 | 36 页 | 2.50 MB | 1 年前3Hadoop 迁移到阿里云MaxCompute 技术方案
使用时,存储与计算解耦,不需要仅仅为了存储扩大不必 要的计算资源 SQL MaxCompute SQL TPC-DS 100% 支持,同时语法高度兼容 Hive,有 Hive 背景开发者直接上手,特别在大数据规模下性能强大。 * 完全自主开发的 compiler,语言功能开发更灵活,迭 代快,语法语义检查更加灵活高效 * 基于代价的优化器,更智能,更强大,更适合复杂的查 询 * 基于 LLVM 的代码生成,让执行过程更高效 具或应用使用默认驱动都可以轻松地连接到 MaxCompute 项目。支持主流 BI 及 SQL 客户端工具的 连接访问,如 Tableau、帆软 BI、Navicat、SQL Workbench/J 等。 显著提升的查询性能:提升了一定数据规模下的查询性 能,查询结果秒级可见,支持 BI 分析、Ad-hoc、在线服 务等场景。 Alibaba Cloud MaxCompute 解决方案 14 Spark MaxCompute 各个 Region 的网络连通质量,以及 download/upload 的性能。 工具使用方法 Example Alibaba Cloud MaxCompute 解决方案 27 输出结果 Output: 性能测试报告 [INFO ] 2019-05-20 17:17:21.664 [main] PerformanceTester0 码力 | 59 页 | 4.33 MB | 1 年前3Hadoop 概述
DNS 服务作 为名称服务,将域名映射为 IP 地址。通过在分布式系统中使用 ZooKeeper,你能记录哪些服务器或服务正处于运行状态,并且能够 通过名称查看它们的状态。 如果有节点出现问题导致宕机,ZooKeeper 会采用一种通过选 举 leader 来完成自动故障切换的策略,这是它自身已经支持的解决 方案(见图 1-2)。选举 leader 是一项服务,可安装在多台机器上作为 或者加载数据到文本文件或者基于文本文件的 Hive 表中。分区也可 以在从 Hive 分区表中查询或加载时被删减。 另一种 Oracle 解决方案 Oracle Loader for Hadoop 是一种高性能 且高效率的连接器,用于从 Hadoop 中加载数据到 Oracle 数据库。 当 Hadoop 发起数据传送时,Oracle Loader for Hadoop 将数据推送到 数据库中。如图 15 轻了对资源的竞争,而这正是插入大量数据时的一个常见问题。它 使得此连接器在连续且频繁地加载时尤其有用。 ORACLE 数据库 SQL 查询 在 HDFS 上就地访问和分析数据 查询和连接 HDFS 数据库中的常驻 数据 在需要时使用 SQL 加载到数据库中 自动负载均衡,从而最大限度地提高 性能 外部表 使用外部表机制 并行访问或加载 到数据库中0 码力 | 17 页 | 583.90 KB | 1 年前3Hadoop 3.0以及未来
升级 Classpath隔离 Shell脚本的重构 • HDFS • YARN • MapReduce Classpath隔离 • HADOOP-11656, HDFS-6200 问题:依赖性地狱(Dependency Hell),版本冲突 解决方案:客户端(client-side)和服务器端(server-side)的隔离 Shell脚本的重构 - HADOOP-9902 • 86% RS(6,3) 3 67% RS(10,4) 4 71% 存储布局-连续和条状 小文件处理 并行IO 数据本地性 数据本地性 小文件处理 纠错码在分布式存储系统中 HDFS 性能 多个Standby Namenode Active NN Standby NN Standby NN DN DN DN DN Journal Node Journal Node Task层次Native优化 • 对map output collector的Native实现,对于shuffle密集型的task能 带来30%的性能提升。 Hadoop 的未来 HDFS的未来 • 对象存储 - HDFS-7240 • 更高性能的Namenode:更高效的内存使用,锁的改进等 • Erasure Coding的完善 YARN的未来 • 更大规模的集群支持 • 更好的资源调度,隔离和多租户0 码力 | 33 页 | 841.56 KB | 1 年前3尚硅谷大数据技术之Hadoop(入门)
Hadoop 概述 1.1 Hadoop 是什么 Hadoop是什么 1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。 2)主要解决,海量数据的存储和海量数据的分析计算问题。 3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。 1.2 Hadoop 发展历史(了解) Hadoop发展历史 1)Hadoop创始人Doug Cut 2)2001年年底Lucene成为Apache基金会的一个子项目。 3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。 4)学习和模仿Google解决这些问题的办法 :微型版Nutch。 5)可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文) GFS --->HDFS Map-Reduce --->MR BigTable Hadoop发展历史 6)2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用 了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。 7)2005 年Hadoop 作为 Lucene的子项目 Nutch的一部分正式引入Apache基金会。 8)2006 年 3 月份,Map-Reduce和Nutch Distributed0 码力 | 35 页 | 1.70 MB | 1 年前3银河麒麟服务器操作系统V4 Hadoop 软件适配手册
内主流厂商的服务器整机产 品,以及达梦、金仓、神通等主要国产数据库和中创、金蝶、东方通等国产中间 件,满足虚拟化、云计算和大数据时代,服务器业务对操作系统在性能、安全性 及可扩展性等方面的需求,是一款具有高安全、高可用、高可靠、高性能的自主 可控服务器操作系统。 1.2 环境概述 服务器型号 长城信安擎天 DF720 服务器 CPU 类型 飞腾 2000+处理器 操作系统版本 分布式文件系统(Hadoop Distributed File System)的缩写, 为分布式计算存储提供了底层支持。采用 Java 语言开发,可以部署在多种普通的 廉价机器上,以集群处理数量积达到大型主机处理性能。 银河麒麟服务器操作系统 V4 hadoop 软件适配手册 3 HDFS 采用 master/slave 架构。一个 HDFS 集群包含一个单独的 NameNode 和多个 DataNode。0 码力 | 8 页 | 313.35 KB | 1 年前3Spark 简介以及与 Hadoop 的对比
RDD 的部分分区数据丢失时,它可以通过 Lineage 获取足够的信息来重新运算和恢复丢失的数据分区。这种粗颗粒的数据模型,限制了 Spark 的运用场合,但同时相比细颗粒度的数据模型,也带来了性能的提升。 RDD 在 Lineage 依赖方面分为两种 Narrow Dependencies 与 Wide Dependencies 用 来解决数据容错的高效性。Narrow Dependencies0 码力 | 3 页 | 172.14 KB | 1 年前3Hadoop开发指南
集群的每⼀个节点,只需授权 访问启动了Httpfs服务的单台机器即可(UHadoop默认在master1:14000开启Httpfs)。由于Httpfs是在内嵌的tomcat中⼀个Web应⽤,因此性能上会受到⼀些限制。 Hadoop开发指南 Copyright © 2012-2021 UCloud 优刻得 8/12 2.3.1 上传⽂件 上传⽂件 数据准备 touch httpfs_uhadoop0 码力 | 12 页 | 135.94 KB | 1 年前3
共 11 条
- 1
- 2