尚硅谷大数据技术之Hadoop(生产调优手册)1MB 的文件设置为 128MB 的块 存储,实际使用的是 1MB 的磁盘空间,而不是 128MB。 2)解决存储小文件办法之一 HDFS 存档文件或 HAR 文件,是一个更高效的文件存档工具,它将文件存入 HDFS 块, 在减少 NameNode 内存使用的同时,允许对文件进行透明的访问。具体说来,HDFS 存档文 件对内还是一个一个独立文件,对 NameNode 而言却是一个整体,减少了 1)在数据采集的时候,就将小文件或小批数据合成大文件再上传 HDFS(数据源头) 2)Hadoop Archive(存储方向) 是一个高效的将小文件放入 HDFS 块中的文件存档工具,能够将多个小文件打包成一 个 HAR 文件,从而达到减少 NameNode 的内存使用 3)CombineTextInputFormat(计算方向) CombineTextInputFormat 用Number of threads to handle scheduler interface. 0 码力 | 41 页 | 2.32 MB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案.................................................................... 17 4 Hadoop 到 MaxCompute 迁移工具介绍 ............................................................................................ 17 Assist) ................................................................................ 17 4.1.1 工具覆盖的场景: ............................................................................................ ................ 44 7.1.1 准备工具和环境 ................................................................................................................... 44 7.1.2 解压工具包,并配置 MaxCompute 连接信息 .........0 码力 | 59 页 | 4.33 MB | 1 年前3
大数据集成与Hadoop - IBM现更高的处理吞吐量。添加硬件资源的同时,无需修改即可运 行相同的应用程序并且性能也会随之提高(参见图1)。 关键成功因素:避免炒作,分辨是非 在这些新兴的Hadoop市场阶段,请仔细分辨听到的所有 说明Hadoop卓尔不群的言论。充分使用Hadoop的神话 与现实之间存在巨大的反差,这在大数据集成方面表现尤为 突出。很多业界传言称,任何不可扩展的抽取、转换和加载 (ETL) 工具搭配Hadoop后都会得到高性能、高度可扩展 纳入了MapReduce的资源管理功能,并将它们内置其 中,这样需要在Hadoop群集间动态执行的其他应用即可 使用它们。结果是,这种方法可将大规模可扩展数据集成 引擎作为本机 Hadoop应用程序来实现,而且不会影响 MapReduce的性能。希望在Hadoop上实现可扩展性和 有效性的所有企业技术都需要采用YARN,并将其作为 产品路线图的一部分。 开始集成之旅以前,请务必了解MapReduce的性能限 上运行4小时可以处理200GB数据,在100个处理器上运 行4小时可以处理400GB数据,以此类推,则说明应用 程序可以实现线性数据可扩展性。 • 应用程序纵向扩展:衡量软件在一个对称多处理器 (SMP) 系统中的多个处理器间实现线性数据可扩展性的 有效程度。 • 应用程序横向扩展:确定软件在非共享架构的多个 SMP 节点间实现线性数据可扩展性的有效程度。 图1. 海量数据可扩展性是一项大数据集成的0 码力 | 16 页 | 1.23 MB | 1 年前3
Hadoop 概述HDFS、MapReduce、YARN、ZooKeeper 和 Hive 的角色 ● Hadoop 与其他系统的集成 ● 数据集成与 Hadoop Hadoop 是一种用于管理大数据的基本工具。这种工具满足了企 业在大型数据库(在 Hadoop 中亦称为数据湖)管理方面日益增长的 需求。当涉及数据时,企业中最大的需求便是可扩展能力。科技和 商业促使各种组织收集越来越多的数据,而这也增加了高效管理这 的过程中,每个组件都在平台中扮演着重 要角色。软件栈始于 Hadoop Common 中所包含的基础组件。Hadoop 1 第 章 Hadoop 大数据解决方案 2 Common 是常见工具和库的集合,用于支持其他 Hadoop 模块。和 其他软件栈一样,这些支持文件是一款成功实现的必要条件。而众 所周知的文件系统,Hadoop 分布式文件系统,或者说 HDFS,则是 Hadoop 据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 Hadoop YARN 加入到软件栈中,它是面向大数据应用程序的分布式 操作系统。 ZooKeeper 是另一个 Hadoop Stack 组件,它能通过共享层次名 称空间的数据寄存器(称为 znode),使得分布式进程相互协调工作。 每个 znode0 码力 | 17 页 | 583.90 KB | 1 年前3
大数据时代的Intel之HadoopPB以上 数据量稳定,增长不快 持续实时产生数据, 年增长率超过60% 主要为结构化数据 半结构化,非结构化, 多维数据 ―大数据‖ 挃数据集的大小超过了现有典型的数据库软件和工具的处理能力。不此同时,及时捕捉、 存储、聚合、管理这些大数据以及对数据的深度分析的新技术和新能力,正在快速增长,就像预 测计算芯片增长速度的摩尔定律一样。 — McKinsey Global HBase改迚和创新,为Hadoop提供实时数据处理能力 针对行业的功能增强,应对丌同行业的大数据挑戓 Hive 0.9.0 交互式数据仓库 Sqoop 1.4.1 关系数据ETL工具 Flume 1.1.0 日志收集工具 Intel Hadoop Manager 2.2 安装、部署、配置、监控、告警和访问控制 Zookeeper 3.4.4 分布式协作服务 Pig 0 实时数据处理的分布式大数据应用平台 •通过对 HBase 迚行改迚和创新,英特尔 Hadoop 发行版提供实时数据处理功能。为企业对数据的实时监控和即时处理提供有效保障 针对企业用户开发的新的平台功能 •提供企业关键应用程序所需的即时大数据分析,以及其他针对企业用户需要的增强功能,例如:提供跨数据中心的 HBase 数据库虚拟大表功能,实现 HBase 数据库复制和备仹功能, 等等。 提供底层 Hadoop 性能优化算法和稳定性增强0 码力 | 36 页 | 2.50 MB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册System),简称 HDFS。HDFS 有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件 上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有 着超大数据集(large data set)的应用程序。HDFS 放宽了(relax)POSIX 的要求, 可以以流的形式访问(streaming access)文件系统中的数据。 Hadoop 的框架最核心的设计就是:HDFS JobTracker 拆分成了两个独立的服务:一个全局的资源管理器 ResourceManager 和每个应用程序特有的 ApplicationMaster。其中 ResourceManager 负责整个系统 的资源管理和分配,而 ApplicationMaster 负责单个应用程序的管理。 YARN 总 体 上 仍 然 是 master/slave 结 构 , 在 整 个 资 源 管 理 resourcemanager 为 master,nodemanager 是 slave。Resourcemanager 负责对各个 nademanger 上资源进行统一管理和调度。当用户提交一个应用程序时,需要提供 一个用以跟踪和管理这个程序的 ApplicationMaster,它负责向 ResourceManager 申请资源,并要求 NodeManger 启动可以占用一定资源的 任务。由于不同的0 码力 | 8 页 | 313.35 KB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)组成(面试重点) Hadoop1.x、2.x、3.x区别 MapReduce(计算) HDFS(数据存储) Yarn(资源调度) Common(辅助工具) MapReduce (计算+资源调度) HDFS(数据存储) Common(辅助工具) Hadoop1.x组成 Hadoop2.x组成 在 Hadoop1.x 时 代 , Hadoop中的MapReduce同 时处理业务逻辑运算和资 数据传输层 数据存储层 资源管理层 数据计算层 任务调度层 业务模型层 Storm实时计算 Flink 图中涉及的技术名词解释如下: 1)Sqoop:Sqoop 是一款开源的工具,主要用于在 Hadoop、Hive 与传统的数据库(MySQL) 间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进 到 Hadoop 的 HDFS 中,也可以将 7)Hbase:HBase 是一个分布式的、面向列的开源数据库。HBase 不同于一般的关系数据库, 它是一个适合于非结构化数据存储的数据库。 8)Hive:Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张 数据库表,并提供简单的 SQL 查询功能,可以将 SQL 语句转换为 MapReduce 任务进行运 行。其优点是学习成本低,可以通过类 SQL 语句快速实现简单的0 码力 | 35 页 | 1.70 MB | 1 年前3
MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
数据处理速度,数据处理速度需要快速 数据处理速度是决定大数据应用的关键 4 大数据带来的挑战 ▪ 传统的工具和方法不能有效工作 – 访问和处理数据变得困难; – 需要学习使用新的工具和新的编程方式; – 不得不重写算法以应对数据规模的增大; ▪ 现有处理或计算方法下的结果质量受到影响 – 被迫只能处理一部分数据(数据子集); – 采用新的工具或重写算法会对现有生产力产生影响; ▪ 数据处理与分析所需时间增长 – 数据规0 码力 | 17 页 | 1.64 MB | 1 年前3
這些年,我們一起追的HadoopProcess 來處理 Compliant with ANSI-92 SQL Standard,所以透過 Cloudera ODBC Driver for Impala,就可以跟既有的 BI/DW 工具整合 52 / 74 Presto Facebook 主導,2012 年秋天開始發展,2013 年春天開始推 廣,作為 Facebook Data Warehouse 的 Query Execution Hadoop Real-Time Integration/Backup Between MySQL and Hadoop 64 / 74 Phoenix 內建的 CLI 工具 - Sqlline Phoenix 建議的 GUI 工具 - SQuirrel Phoenix - We put the SQL back in NoSQL Salesforce 主導 其實就是在 HBase 上頭提供一個0 码力 | 74 页 | 45.76 MB | 1 年前3
Hadoop 3.0以及未来--debug Hadoop 3介绍 • Common • HDFS 纠错码(Erasure Coding) 多个Standby Namenode Datanode内部balance工具 云计算平台的支持 • YARN • MapReduce HDFS纠错码(Erasure Coding) • 一个简单的例子 1备份: 1,0 需要额外的2位 XOR编码: 1,0 需要额外的1位0 码力 | 33 页 | 841.56 KB | 1 年前3
共 10 条
- 1













