尚硅谷大数据技术之Hadoop(生产调优手册)4)查看回收站 回收站目录在 HDFS 集群中的路径:/user/atguigu/.Trash/…. 5)注意:通过网页上直接删除的文件也不会走回收站。 6)通过程序删除的文件不会经过回收站,需要调用 moveToTrash()才进入回收站 Trash trash = New Trash(conf); trash.moveToTrash(path); 7)只有在命令行利用 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 数据本地性原则,就会导致 hadoop102 和 hadoop104 数据过多,hadoop103 存储的数据量小。 另一种情况,就是新服役的服务器数据量比较少,需要执行集群均衡命令。 2)开启数据均衡命令: [atguigu@hadoop105 hadoop-3.1.3]$ sbin/start-balancer 存储小文件弊端 每个文件均按块存储,每个块的元数据存储在 NameNode 的内存中,因此 HDFS 存储 小文件会非常低效。因为大量的小文件会耗尽 NameNode 中的大部分内存。但注意,存储小 文件所需要的磁盘容量和数据块的大小无关。例如,一个 1MB 的文件设置为 128MB 的块 存储,实际使用的是 1MB 的磁盘空间,而不是 128MB。 2)解决存储小文件办法之一 HDFS0 码力 | 41 页 | 2.32 MB | 1 年前3
這些年,我們一起追的Hadoopoperational operating systems with its distributions (RedHat, Ubuntu, Fedora, Debian etc.) 所以,市面上就有了一堆大同小異的 Hadoop Distribution: Cloudera 有 Cloudera Distribution for Hadoop (CDH) Oracle 有 Oracle Big Data Appliance Distribution for Apache Hadoop 2013 年拿到 35M 的 Funding,2014 年又從 Google 跟 Qualcomm 拿到 110M。 45 / 74 難得有不是萬年小學生的日本卡通! Hadoop 富二代 46 / 74 Parallel Processing: Tez Spark ... User Interface: Hue SQL on Hadoop: 其實就是在 HBase 上頭提供一個 JDBC Wrapper,把 Client 端提 供的 SQL Query,翻譯成一連串的 HBase Scan,再把結果包裝成 JDBC ResultSet 傳回 號稱小的 Query 只要幾個 ms,幾個 Million 的資料筆數也只要幾秒 就可以 65 / 74 使用熟悉的 JDBC API 存取 HBase public class HelloPhoenix0 码力 | 74 页 | 45.76 MB | 1 年前3
大数据集成与Hadoop - IBM性意味着对 处理的数据量、处理吞吐量以及使用的处理器和处理节点数 量全无限制。只需添加更多的硬件,即可处理更多的数据,实 现更高的处理吞吐量。添加硬件资源的同时,无需修改即可运 行相同的应用程序并且性能也会随之提高(参见图1)。 关键成功因素:避免炒作,分辨是非 在这些新兴的Hadoop市场阶段,请仔细分辨听到的所有 说明Hadoop卓尔不群的言论。充分使用Hadoop的神话 与现 纳入了MapReduce的资源管理功能,并将它们内置其 中,这样需要在Hadoop群集间动态执行的其他应用即可 使用它们。结果是,这种方法可将大规模可扩展数据集成 引擎作为本机 Hadoop应用程序来实现,而且不会影响 MapReduce的性能。希望在Hadoop上实现可扩展性和 有效性的所有企业技术都需要采用YARN,并将其作为 产品路线图的一部分。 开始集成之旅以前,请务必了解MapReduce的性能限 上运行4小时可以处理200GB数据,在100个处理器上运 行4小时可以处理400GB数据,以此类推,则说明应用 程序可以实现线性数据可扩展性。 • 应用程序纵向扩展:衡量软件在一个对称多处理器 (SMP) 系统中的多个处理器间实现线性数据可扩展性的 有效程度。 • 应用程序横向扩展:确定软件在非共享架构的多个 SMP 节点间实现线性数据可扩展性的有效程度。 图1. 海量数据可扩展0 码力 | 16 页 | 1.23 MB | 1 年前3
Hadoop 概述据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 Hadoop YARN 加入到软件栈中,它是面向大数据应用程序的分布式 操作系统。 ZooKeeper 是另一个 Hadoop Stack 组件,它能通过共享层次名 称空间的数据寄存器(称为 znode),使得分布式进程相互协调工作。 每个 znode 4 Machine,VM)或笔记本电脑上完成初始配置,而且可以升级到服务 器部署。它具有高度的容错性,并且被设计为能够部署在低成本的 硬件之上。它提供对应用程序数据的高吞吐量访问,适合于面向大 型数据集的应用程序。 在任何环境中,硬件故障都是不可避免的。有了 HDFS,你的 数据可以跨越数千台服务器,而每台服务器上均包含一部分基础数 据。这就是容错功能发挥作用的地方。现实情况是,这么多服务器 总会遇到一台或者多台无法正常工作的风险。HDFS 具备检测故障 和快速执行自动恢复的功能。 HDFS 的设计针对批处理做了优化,它提供高吞吐量的数据访 问,而非低延迟的数据访问。运行在 HDFS 上的应用程序有着大型 数据集。在 HDFS 中一个典型的文件大小可以达到数百 GB 或更大, 所以 HDFS 显然支持大文件。它提供高效集成数据带宽,并且单个 群集可以扩展至数百节点。 Hadoop0 码力 | 17 页 | 583.90 KB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高 速运算和存储。 Hadoop 实现了一个分布式文件系统(Hadoop Distributed File System),简称 HDFS。HDFS 有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件 上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有 着超大数据集(large 着超大数据集(large data set)的应用程序。HDFS 放宽了(relax)POSIX 的要求, 可以以流的形式访问(streaming access)文件系统中的数据。 Hadoop 的框架最核心的设计就是:HDFS 和 MapReduce。HDFS 为海量的数 据提供了存储,而 MapReduce 则为海量的数据提供了计算。 1.4 HDFS 架构原理 HDFS 是 Hadoop 分布式文件系统(Hadoop JobTracker 拆分成了两个独立的服务:一个全局的资源管理器 ResourceManager 和每个应用程序特有的 ApplicationMaster。其中 ResourceManager 负责整个系统 的资源管理和分配,而 ApplicationMaster 负责单个应用程序的管理。 YARN 总 体 上 仍 然 是 master/slave 结 构 , 在 整 个 资 源 管 理0 码力 | 8 页 | 313.35 KB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)ALL=(ALL) NOPASSWD:ALL 注意:atguigu 这一行不要直接放到 root 行下面,因为所有用户都属于 wheel 组,你先 配置了 atguigu 具有免密功能,但是程序执行到%wheel 行时,该功能又被覆盖回需要 密码。所以 atguigu 要放到%wheel 这行下面。 5)在/opt 目录下创建文件夹,并修改所属主和所属组 (1)在/opt 目录下创建 yarn hadoop mapreduce atguigu atguigu ➢ 保存退出::wq 4)回到 Hadoop 目录/opt/module/hadoop-3.1.3 5)执行程序 [atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3mapreduce.framework.name yarn 0 码力 | 35 页 | 1.70 MB | 1 年前3
通过Oracle 并行处理集成 Hadoop 数据数据。遗憾的是,常规的操作系统无法调用外部表驱动直接访问 HDFS 文件。FUSE(File System in Userspace)项目针对这种情况提供了解决方法。有多种 FUSE 驱动程序支持用户挂 载 HDFS 存储,并将其作为常规文件系统处理。通过使用一个此类驱动程序,并在数据库实 例上挂载 HDFS(如果是 RAC 数据库,则在其所有实例上挂载 HDFS),即可使用外部表基 础架构轻松访问 HDFS 文件。 图 4. 监控进程 Hadoop的进程 (mapper) 启动之后,作业监控器进程将监视启动程序脚本。一旦mapper 完成 Hadoop 集群中数据的处理之后,bash 脚本即完成,如图 4 所示。 作业监控器将监视数据库调度程序队列,并在 shell 脚本完成时发出通知(第 7 步)。作业监 控器检查数据队列中的剩余数据元素(第 8 步)。只要队列中存在数据,表函数调用就会继0 码力 | 21 页 | 1.03 MB | 1 年前3
大数据时代的Intel之Hadoopintel.com/technology/iamt。 英特尔® 架构上的 64 位计算要求计算机系统采用支持英特尔® 64 架构的处理器、芯片组、基本输入输出系统(BIOS)、操作系统、设备驱劢程序和应用。实际性能会根据您使用的具体 软硬件配置的丌同而有所差异。如欲了解更多信息£¬请不您的系统厂商联系。 没有仸何计算机系统能够在所有情冴下提供绝对的安全性。英特尔® 可信执行技术是由英特尔开 针对企业用户开发的新的平台功能 •提供企业关键应用程序所需的即时大数据分析,以及其他针对企业用户需要的增强功能,例如:提供跨数据中心的 HBase 数据库虚拟大表功能,实现 HBase 数据库复制和备仹功能, 等等。 提供底层 Hadoop 性能优化算法和稳定性增强 •基亍 Hadoop 底层的大量优化算法,配合英特尔优化架构,使应用效率更高、计算存储分布更均衡,系统安装程序计算得出的优化参数配置,适合大多数0 码力 | 36 页 | 2.50 MB | 1 年前3
MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
支持众多基本的数学函数、统计函数、索引函数等. – 支持机器学习算法包括分类、聚类和回归 7 tall array Single Machine Memory tall arrays ▪ 自动将数据分解成适合内存的小 “块”(chunk) ▪ 计算过程中,一次处理一个“块”(chunk) 的数据 ▪ 对tall数组(tall array)的编程方式与MATLAB 标准数组 编程方式一致 Single Machine0 码力 | 17 页 | 1.64 MB | 1 年前3
共 9 条
- 1













