Hadoop 概述与其他系统的集成 ● 数据集成与 Hadoop Hadoop 是一种用于管理大数据的基本工具。这种工具满足了企 业在大型数据库(在 Hadoop 中亦称为数据湖)管理方面日益增长的 需求。当涉及数据时,企业中最大的需求便是可扩展能力。科技和 商业促使各种组织收集越来越多的数据,而这也增加了高效管理这 些数据的需求。本章探讨 Hadoop Stack,以及所有可与 Hadoop 一 HDFS,则是 Hadoop 的核心,然而它并不会威胁到你的预算。如果要分析一组数 据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 Hadoop YARN 加入到软件栈中,它是面向大数据应用程序的分布式 操作系统。 ZooKeeper 是另一个 Hadoop Stack 组件,它能通过共享层次名 称空间的数据寄存器(称为 并不被认为是一种关系型数据库管理系统 (RDBMS),但其仍能与 Oracle、MySQL 和 SQL Server 等系统一起 工作。这些系统都已经开发了用于对接 Hadoop 框架的连接组件。 我们将在本章介绍这些组件中的一部分,并且展示它们如何与 Hadoop 进行交互。 1.1 商业分析与大数据 商业分析通过统计和业务分析对数据进行研究。Hadoop 允许你 在其数据存储中进行业务分析。这些结果使得组织和公司能够做出0 码力 | 17 页 | 583.90 KB | 1 年前3
大数据集成与Hadoop - IBM本、增加 收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 并可根据需求变化从单一服务器扩展到数以千计的服务器。主 要的Hadoop组件包括Hadoop Distributed File System (用于存储大型文件)和Hadoop分布式并行处理框架(称为 MapReduce)。 但是,Hadoop基础架构本身并没有提供完整的大数据集成解 决方案,摆在人们面前的既有挑战,也有机遇,只有处理好这些 问题,才能安享各项优势,最大限度提高投资回报率 (ROI)。 大数据集成对于Hadoop措施的重要性 Hadoop的迅速崛起推动企业在如何抽取、管理、转换、存储和 分析大数据方面实现了范式转变。无论是要更深入的分析,还是 希望获得更出色的洞察、新产品、新服务以及更高的服务水平,都 可以通过这项技术一一实现,从而大幅降低成本并创造新的 收入。 高性能处理,而是为了实现细粒度的容错。这种差异可能会 使整体性能和有效性降低一个数量级乃至更多。 Hadoop Yet Another Resource Negotiator(YARN) 纳入了MapReduce的资源管理功能,并将它们内置其 中,这样需要在Hadoop群集间动态执行的其他应用即可 使用它们。结果是,这种方法可将大规模可扩展数据集成 引擎作为本机 Hadoop应用程序来实现,而且不会影响 Ma0 码力 | 16 页 | 1.23 MB | 1 年前3
大数据时代的Intel之Hadoop英特尔迚行赔偿,保 证因使用此类关键业务应用而造成的产品责仸、人员伤害戒死亡索赔中直接戒间接发生的所有索赔成本、损坏、费用以及合理的律师费丌会对英特尔及其子公司、分包商和分支机构,以及 相关的董事、管理人员和员工造成损害,无论英特尔及其分包商在英特尔产品戒其仸何部件的设计、制造戒警示环节是否出现疏忽大意的情冴。 英特尔可以随时在丌发布声明的情冴下修改规格和产品说明。设计者丌应信赖仸何英特产品所 Inside、英特尔凌劢、英特尔 Flexpipe 和 Thunderbolt 是英特尔公司在美国和/戒其他国家戒地区的商标。 英特尔® 主劢管理技术要求平台采用支持英特尔主劢管理技术的芯片组、网络硬件和软件。系统必须接通电源幵建立网络连接。就笔记本电脑而言,英特尔主劢管理技术可能在基亍主机操 作系统的虚拟与用网(VPN)上,戒者在无线连接、使用电池电源、睡眠、休眠戒关机时无法使用戒是某些功能受到限制。如欲了解更多信息,请访问:httP: 不此同时,及时捕捉、 存储、聚合、管理这些大数据以及对数据的深度分析的新技术和新能力,正在快速增长,就像预 测计算芯片增长速度的摩尔定律一样。 — McKinsey Global Institute 统计和报表 价值 数据挖掘和预测性分析 大数据时代的Intel • Intel的角色 • Intel Hadoop商业发行版 • 对象存储技术 Intel的角色0 码力 | 36 页 | 2.50 MB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)第 1 章 Hadoop 概述 1.1 Hadoop 是什么 Hadoop是什么 1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。 2)主要解决,海量数据的存储和海量数据的分析计算问题。 3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。 1.2 Hadoop 发展历史(了解) Hadoop发展历史 1)Hadoop创始人Doug 化升级,查询引擎和索引引擎。 Hadoop创始人Doug Cutting 2)2001年年底Lucene成为Apache基金会的一个子项目。 3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。 4)学习和模仿Google解决这些问题的办法 :微型版Nutch。 5)可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文) GFS 发行版,完全开源,比 Apache Hadoop 在兼容性,安 全性,稳定性上有所增强。Cloudera 的标价为每年每个节点 10000 美元。 (4)Cloudera Manager 是集群的软件分发及管理监控平台,可以在几个小时内部署好一 个 Hadoop 集群,并对集群的节点及服务进行实时监控。 3)Hortonworks Hadoop 官网地址:https://hortonworks.0 码力 | 35 页 | 1.70 MB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册Hadoop 软件简介 Hadoop 是一个由 Apache 基金会所开发的分布式系统基础架构。用户可以在 不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高 速运算和存储。 Hadoop 实现了一个分布式文件系统(Hadoop Distributed File System),简称 HDFS。HDFS 有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件 的框架最核心的设计就是:HDFS 和 MapReduce。HDFS 为海量的数 据提供了存储,而 MapReduce 则为海量的数据提供了计算。 1.4 HDFS 架构原理 HDFS 是 Hadoop 分布式文件系统(Hadoop Distributed File System)的缩写, 为分布式计算存储提供了底层支持。采用 Java 语言开发,可以部署在多种普通的 廉价机器上,以集群处理数量积达到大型主机处理性能。 3 HDFS 采用 master/slave 架构。一个 HDFS 集群包含一个单独的 NameNode 和多个 DataNode。 NameNode 作为 master 服务,它负责管理文件系统的命名空间和客户端对文 件的访问。NameNode 会保存文件系统的具体信息,包括文件信息、文件被分割 成具体 block 块的信息、以及每一个 block 块归属的 DataNode 的信息。对于整个0 码力 | 8 页 | 313.35 KB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案这些逻辑组件包括: 数据源:数据源包括关系型数据库、日志文件、实时消息等。 数据存储:面向海量数据存储的分布式文件存储服务,支持 结构化数据和非结构数据数据存 储,我们也常称之为数据湖。如 HDFS、对象存储服务等。 批处理:由于大数据场景必须处理大规模的数据集,批处理往往需要从数据存储中读取大量 数据进 行长 时间 处理 分析 ,并将 处理 后的 数据 写 入 新的 数据 Streaming、Storm 等。 机器学习:满足机器学习工作负载的服务。如当前流行的 Spark MLib/ML、Tensorflow 等。 分析型数据存储:对数据进行处理加工后,面向应用场景,将数据以结构化的方式进行存储, 以便分析工具或分析应用能够获取数据。如利用 MPP 数据仓库、Spark SQL 等支持 BI 工具 访问,利用 Hbase 实现低延迟的在线服务等 ),以便读者对相关服务的迁移至 阿里云大数据产品服务有更好的理解。 组件分类 Hadoop 开源组件 阿里云产品/产品组件 数据存储 HDFS 文件系统 对象存储 MaxCompute 存储(仅开放表数据存储) OSS 对象存储 EMR HDFS 批处理 Hadoop MapReduce Hive Spark MaxCompute 批处理(MaxCompute0 码力 | 59 页 | 4.33 MB | 1 年前3
Hadoop 3.0以及未来Hadoop 3.0以及未来 刘 轶 自我简介 • Apache Hadoop的committer和顷目管理委员会成员。 • ebay的Paid IM(互联网市场)部门架构师,领导ebay产品广告、互 联网市场数据和实验平台的架构设计。负责领导使用Hadoop、 Spark、Kafka、Cassandra等开源大数据顷目建立ebay的广告和数 据平台。 • 加入ebay前,在intel工作6年,大数据架构师,负责领导大数据的 Cloudera创立 Hortonworks创立 Hadoop 1.0发布 Hadoop 2.0 GA Spark成为顶级顷目 Hadoop 3.0 2017 Hadoop生态系统 文件存储层 HDFS 资源/任务调度 YARN 计算引擎MapReduce 计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习 Batch 任务 流处理 搜索 … Kafka (RS) 编码 数据可靠性和存储效率 • 数据可靠性:可以最多几个节点故障 • 存储效率:k/(k+m) 可靠性 存储效率 单副本 0 100% 3副本 2 33% XOR(6个数据单元) 1 86% RS(6,3) 3 67% RS(10,4) 4 71% 存储布局-连续和条状 小文件处理 并行IO 数据本地性 数据本地性 小文件处理 纠错码在分布式存储系统中 HDFS 性能0 码力 | 33 页 | 841.56 KB | 1 年前3
尚硅谷大数据技术之Hadoop(生产调优手册)第 1 章 HDFS—核心参数 1.1 NameNode 内存生产配置 1)NameNode 内存计算 每个文件块大概占用 150byte,一台服务器 128G 内存为例,能存储多少文件块呢? 128 * 1024 * 1024 * 1024 / 150Byte ≈ 9.1 亿 G MB KB Byte 2)Hadoop2.x 系列,配置 NameNode 12 月 11 08:03 name2 检查 name1 和 name2 里面的内容,发现一模一样。 3.2 DataNode 多目录配置 1)DataNode 可以配置成多个目录,每个目录存储的数据不一样(数据不是副本) 2)具体配置如下 在 hdfs-site.xml 文件中添加如下内容dfs.datanode.data diskbalancer -cancel hadoop103.plan.json 第 4 章 HDFS—集群扩容及缩容 4.1 添加白名单 白名单:表示在白名单的主机 IP 地址可以,用来存储数据。 企业中:配置白名单,可以尽量防止黑客恶意访问攻击。 配置白名单步骤如下: 1)在 NameNode 节点的/opt/module/hadoop-3.1.3/etc/hadoop 0 码力 | 41 页 | 2.32 MB | 1 年前3
Hadoop开发指南让环境⽣效 source /etc/profile或者 source ~/.bashrc 2. HDFS HDFS是⼀个⾼度容错性和⾼吞吐量的分布式⽂件系统。它被设计的易于扩展也易于使⽤,适合海量⽂件的存储。 2.1 HDFS基础操作 基础操作 查询⽂件 Usage: hadoop fs [generic options] -ls [-d] [-h] [-R] [] 上传⽂件 Usage: nager restart 重启NodeManager:service hadoop-yarn-nodemanager restart 重启整个Hadoop服务:请通过UCloud控制台集群服务管理⻚⾯操作 2.5.2 查看 查看HDFS状态,节点信息 状态,节点信息 hdfs dfsadmin -report 2.5.3 修改 修改HDFS⽂件副本数量 ⽂件副本数量 hdfs dfs 0 码力 | 12 页 | 135.94 KB | 1 年前3
通过Oracle 并行处理集成 Hadoop 数据明细信息,以及部分可用于趋势分析或丰富其他数据的精华信息。尽管这些数据 存储在数据库之外,但一些客户仍然希望将其与数据库中的数据整合在一起以提 取对业务用户有价值的信息。 本文详细介绍了如何从 Oracle 数据库访问存储在 Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 布式存储机制。本文中介绍了各种访问方法,还通过一个具体示例说明了其中一 数据库里访问某个文件系统中的外部文件或外部数据,最简单的方法莫过于使用 外部表。请参阅这里了解外部表。 外部表以表的形式展示存储在文件系统中的数据,并且可在 SQL 查询中完全透明地使用。 因此,可以考虑用外部表从 Oracle 数据库中直接访问 HDFS(Hadoop 文件系统)中存储的 数据。遗憾的是,常规的操作系统无法调用外部表驱动直接访问 HDFS 文件。FUSE(File System in in Userspace)项目针对这种情况提供了解决方法。有多种 FUSE 驱动程序支持用户挂 载 HDFS 存储,并将其作为常规文件系统处理。通过使用一个此类驱动程序,并在数据库实 例上挂载 HDFS(如果是 RAC 数据库,则在其所有实例上挂载 HDFS),即可使用外部表基 础架构轻松访问 HDFS 文件。 图 1. 用数据库内置的 MapReduce 通过外部表进行访问0 码力 | 21 页 | 1.03 MB | 1 年前3
共 11 条
- 1
- 2













